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Abstract

Eruption forecasting is a major goal in volcanology. Logically, but unfortunately, forecasting hazards related to
non-magmatic unrest is too often overshadowed by eruption forecasting, although many volcanoes often pass through
states of non-eruptive and non-magmatic unrest for various and prolonged periods of time. Volcanic hazards related to
non-magmatic unrest can be highly violent and/or destructive (e.g., phreatic eruptions, secondary lahars), can lead into
magmatic and eventually eruptive unrest, and can be more difficult to forecast than magmatic unrest, for various
reasons. The duration of a state of non-magmatic unrest and the cause, type and locus of hazardous events can be
highly variable. Moreover, non-magmatic hazards can be related to factors external to the volcano (e.g., climate,
earthquake). So far, monitoring networks are often limited to the usual seismic-ground deformation-gas network,
whereas recognizing indicators for non-magmatic unrest requires additional approaches. In this study we summarize
non-magmatic unrest processes and potential indicators for related hazards. We propose an event-tree to classify
non-magmatic unrest, which aims to cover all major hazardous outcomes. This structure could become useful for
future probabilistic non-magmatic hazard assessments, and might reveal clues for future monitoring strategies.
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Introduction
During long inter-eruptive periods of hundreds to thou-
sands of years, a volcano passes through different stages of
activity including periods of dormancy, quiescence, reawa-
kening and unrest. Due to this very long-term behavior,
hazard forecasting becomes challenging, in particular for
short-term time frames (days to few months). So far, most
volcanic hazard assessments have focused on magmatic
unrest (e.g., Sparks 2003). Effective hazard assessment and
risk mitigation during unrest depends on the early and re-
liable identification of changes in volcanic dynamics and
their recognition as potential precursors to a hazardous
event (Selva et al. 2012). Major uncertainties in the identi-
fication of the causative processes of unrest translate into
uncertainties in short-term forecasting. The problem is
made even more complicated by the intrinsic and almost
inevitable subjectivity in the definition of unrest. Phillipson
et al. (2013) defined volcanic unrest as the “deviation from
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the background behavior of a volcano towards a behavior,
which is cause for concern in the short-term because it
might be a prelude to an eruption”, a concept that we
adopt in this study. Unrest depends also on the volcano it-
self, reflected by its background activity, and should thus
be defined for each volcano separately (e.g., Potter 2014;
Sandri et al. 2014).
If the cause of concern during a stage of volcanic unrest

is the recognition of the migration from a magma reservoir
(Figure 1), the volcano is in a stage of magmatic unrest.
Hence, this process does not attest to processes and cha-
racteristics that are intrinsic of stagnant cooling magma
batches at given P-T conditions such as convection or
crystallization, which may contribute to degassing (Figure 1).
If no evidence for “magma-on-the-move” exists, but con-
cern remains high for any other reason, the volcano is in a
phase of non-magmatic unrest. This apparently banal but
highly practical distinction does not imply that recognizing
non-magmatic unrest is easy. One important task of this
study is to shed light on the detectable indicators of non-
magmatic unrest in its various ways.
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Figure 1 Magmatic vs non-magmatic unrest. A volcano is in a stage of magmatic unrest if volcanic unrest is caused by the migration from a
magma reservoir (left), which we are able to recognize as such. If we cannot recognize magma migration (regardless whether it migrates or not),
but concern remains high for any other reason, the volcano will be in a state of non-magmatic unrest (right). Magma convection and
crystallization in a magma chamber are often not recognized as magma migrations, and thus would results in non-magmatic unrest.

Rouwet et al. Journal of Applied Volcanology 2014, 3:17 Page 2 of 17
http://www.appliedvolc.com/content/3/1/17
Probabilistic methods can be applied to forecast vol-
canic activity across different timescales. Several tools
have been developed and applied over the past decade
including event trees (Newhall and Hoblitt 2002), some
focusing only on magmatic eruptions (Bayesian Belief
Network, BBN, Aspinall et al. 2003; Bayesian Event Tree
for Eruption Forecasting, BET_EF, Marzocchi et al.
2004a, 2008; Sandri et al. 2009, 2012; Selva et al. 2012;
Marzocchi and Bebbington 2012), others also focusing
on long-term hazard assessments (Bayesian Event Tree
for Volcanic Hazard, BET_VH, Marzocchi et al. 2010;
Selva et al. 2010; Sandri et al. 2014; HASSET, Sobradelo
et al. 2014). So far, the schemes for short-term hazard
assessment have put only minor emphasis on evaluating
phenomena associated to non-magmatic hazards, despite
the fact that these have had significant economic and so-
cial impact in the past. Prominent examples of activity at
volcanoes which did not probably involve magmatic
eruptions include the phreatic activity at Soufrière de
Guadeloupe in 1976 (Shepherd et al. 1979; Shepherd
and Sigurdsson 1982), non-eruptive unrest at Campi
Flegrei in the 1980’s (Barberi et al. 1984; Dvorak and
Mastrolorenzo 1991; Orsi et al. 1999; Chiodini et al. 2001,
2003), and the flank collapse of Casita volcano in 1998
(Kerle and van Wijck de Vries 2001), to name a few.
This paper reviews various non-magmatic unrest phe-

nomena, in order to help recognize and track potentially
hazardous outcomes. We will present an event tree to
map the evolution of non-magmatic unrest along differ-
ent stages, with an increasing level of detail. This event
tree has not yet been applied to probabilistic hazard
forecasting during stages of non-magmatic unrest, al-
though it is intended to become the basis for a future
BET_UNREST code. Adding this branch to the BET
(Bayesian Even Tree) provides a means to assess all haz-
ardous outcomes that should be considered in real-time
updating of the BET model. The background idea is that
“magma-on-the-move” is a necessity before a magmatic
eruption. However, it is not a necessity for the evolution of
different stages of non-magmatic unrest. Hence, we stress
the importance of recognizing magma on the move to dis-
tinguish between magmatic and non-magmatic unrest.
Here we present a concept for the recognition of precur-
sory symptoms and resultant potential threats from non-
magmatic unrest activity.

Non-magmatic hydrothermal unrest
Many volcanoes hosting hydrothermal systems are in a
state of quiescence (i.e. background activity) during
prolonged inter-eruptive phases, manifested as low-
temperature fumarolic emissions (Giggenbach et al.
1990; Sturchio and Williams 1990; Giggenbach and
Corrales Soto 1992; Sturchio et al. 1993; Fischer et al.
1997; Lewicki et al. 2000; Rouwet et al. 2009; Joseph
et al. 2011, 2013; Chiodini et al. 2012), diffuse CO2 soil
degassing and steaming ground (Cardellini et al. 2003;
Werner et al. 2003, 2008; Bergfeld et al. 2006, 2012;
Werner and Cardellini 2006; Lewicki et al. 2007a,
2007b; Mazot et al. 2011; Inguaggiato et al. 2012;
Lewicki and Hilley 2014), thermal spring discharges
(Taran et al. 2008; Taran and Peiffer 2009), low-activity
crater lakes (Pasternack and Varekamp 1997; Taran et al.
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1998; Stimac et al. 2004; Rouwet et al. 2004, 2008, 2014;
Taran and Rouwet 2008), and/or hydrothermal alteration
(Getahun et al. 1996; Gehring et al. 1999; Salaün et al.
2011). Volcano-hydrothermal systems seem to develop
more frequently in closed-conduit dome complexes and
calderas (e.g. Yellowstone, Long Valley and Campi Flegrei),
rather than cone-shaped central-conduit stratovolcanoes
(Rouwet et al. 2015), and surface manifestations often re-
flect the local tectonic regime of the volcano (e.g., Mazot
et al. 2011). Despite the relatively non-hazardous nature of
such prolonged hydrothermal background activity, a pro-
found knowledge of quiescent activity of individual volca-
noes is necessary to understand the short- (daily) and
long-term (seasonal, yearly) baseline behavior from which
to deviate when evolving towards a state that causes
concern.

Hydrothermal eruptive unrest
Eruptions during stages of non-magmatic unrest, by
definition, do not deal with lava or juvenile tephra emis-
sion, as no magma migration is involved. However, be-
sides lava and juvenile tephra, volcanoes are able to
release fluids in an effusive or explosive manner. Below,
we describe several observed mechanisms leading to
such events.

Effusive eruptive unrest
Water effusion Volcano-hydrothermal systems can
manifest non-explosive expulsion of water. A rise of the
water level in volcano-hydrothermal systems can be
caused by the interplay of (1) increased or prolonged infil-
tration of meteoric water into a hydrothermal system, (2)
increased or prolonged condensation of steam into a near-
surface aquifer, (3) variations in the vapor pressure regime
in a hydrothermal system, or (4) the rise of perched aqui-
fers due to buoyancy effects of a rising bubble-rich or
vapor-rich fluid front.
Variations in the phreatic level of an aquifer often pass

visually unobserved, as the effect does not necessarily
reach the surface. Nevertheless, changes in the water sat-
uration state in a volcanic edifice can drastically change its
mechanical and hydraulic conditions (Reid 2004). These
variations in hydraulic regime in a volcano can be detected
through self potential, microgravity, resistivity or VLF
surveys (Finizola et al. 2003; Révil et al. 2004; Zlotnicki
et al. 2006; Gottsmann et al. 2007; Fournier et al. 2009;
Villasante-Marcos et al. 2014). Water level gauging in
wells or flow rate measurements from (thermal) springs at
volcano flanks is the most direct way, although few exam-
ples of frequent monitoring exist (Ingebritsen et al. 2001;
Hurwitz et al. 2002; Taran and Peiffer 2009), which inevit-
ably leads to the need for numerical modeling procedures
to increase theoretical insights (Hurwitz et al. 2003;
Todesco and Berrino 2005).
Variations of the water level in a hydrothermal system is
most obvious when aquifers intersect the surface, through
direct outpouring of water from wells or springs, or varia-
tions in the water level of crater lakes. El Chichón volcano
(Mexico), in a state of non-magmatic unrest since soon
after the 1982 Plinian eruptions, hosts a boiling spring
which periodically discharges water towards its crater lake
(Rouwet et al. 2004, 2008) (Figure 2). This particular dy-
namics results from the prolonged infiltration of meteoric
water into the volcano-hydrothermal system which, to-
gether with the local boiling regime, creates a steam cap
that leads to non-explosive water expulsion.
An intrinsically gravitationally unstable system is mani-

fested as a near-boiling lake that occasionally drains and re-
fills its water, without necessarily a clear cycle (in contrast
to geysers) (Inferno Lake, New Zealand, Vandemeulebrouck
et al. 2005; Boiling Lake, Dominica, Fournier et al. 2009; Di
Napoli et al. 2013). Such lakes can be sustained above the
regional aquifer by the drag force caused by a gas phase
flowing through a liquid-filled permeable conduit. At equi-
librium, the hydrostatic pressure of the water raised above
the water table counterbalances the drag stress for each
bubble. In order words, bubbles “carry” the lake. Moreover,
denser cold water near the lake will be lifted by underlying
hotter water, which needs to boil and bubble to keep the
unstable cooler lake suspended.
Poás’ crater lake Laguna Caliente peculiarly overflowed

its stable and steep-walled crater lake basin from January
to April 2005 (despite the dry season), a year before the
onset of the 2006-ongoing phreatic eruption cycle. This
sudden rise was probably induced by an upwelling vapor
front beneath the crater lake, or the injection of a liquid
(direct or as condensed steam) into the cooler lake.

Sulfur volcanism Sulfur is a low viscosity liquid be-
tween ~116° and ~159°C (Oppenheimer 1992; Takano
et al. 1994). If a fumarolic system is heated to >116°C pre-
existing sulfur deposits in vugs and vents can be remobi-
lized, manifested as a sulfur flow at the surface (Naranjo
1985; Oppenheimer 1992; Harris et al. 2004). This feature
is a clear sign of heating of a previously colder system, and
thus often the onset of a state of non-magmatic unrest.
Recently, sulfur flows were observed at White Island (New
Zealand, 2013); Poás (Costa Rica, in May 2005, 10 months
before the onset of the 2006-ongoing phreatic eruption
cycle) (Figure 3), Turrialba (Costa Rica, the morning of the
11 January 2012 phreatic eruption, G. González pers.
comm.), andat Sulphur Springs, Soufrière (Dominica) in
1994, four years before an intense seismic swarm (J. Lindsay
pers. comm.). “Sulfur volcanism” is exhibited as spectacular
sulfur volcanoes, boiling sulfur ponds, or liquid sulfur pools
at the bottom of active crater lakes, manifested at the sur-
face as floating sulfur spherules (e.g., Lake Yugama,
Kusatsu-Shirane volcano, Japan, Takano et al. 1994; Poás,



Figure 2 Water expulsion from a boiling spring discharging towards the crater lake (top) inside the active crater of El Chichón volcano,
Mexico. The image in the inset shows a detail of the spring (Picture by Yuri Taran, November 2009).
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Oppenheimer and Stevenson 1989, Oppenheimer 1992;
Keli Mutu, Pasternack and Varekamp 1994).

Explosive eruptive unrest
Phreatomagmatic eruptions A phreatomagmatic eruption
implies the presence of magma, and thus seemingly a state
of magmatic unrest. Unfortunately, phreatomagmatic
eruptions can occur without a clear precursor during a
phase of non-magmatic unrest, (i.e. no signal of magma
migration is recognized) as a major trigger mechanism for
Figure 3 Deposit of the May 2005 sulfur flow at Poás volcano (Picture
phreatomagmatic eruptions is decompression. If a stag-
nant magma body is present near the surface (common in
the most active hydrothermal systems) it can easily be
triggered into phreatomagmatic activity.
There are examples of decompression triggered phreato-

magmatic eruptions, which occurred during non-magmatic
hydrothermal unrest. During the period before the 25
September 2007 phreatomagmatic eruption of Ruapehu
(New Zealand) the volcano was seismically quiet and the
crater lake water temperature was low (13°C, Christenson
by D.R.).
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et al. 2010; Jolly et al. 2010), i.e. at that point, lacking any
sign of magmatic unrest (Figure 4). The volcano experi-
enced at that time a prolonged period of non-magmatic
hydrothermal unrest. Volcano-tectonic earthquakes and
volcanic tremor occurred only 10 minutes and 1 minute,
respectively, before the eruption (Jolly et al. 2010). Within
the practicality of volcano monitoring, precursory signals
for such phreatomagmatic eruptions remain extremely dif-
ficult to recognize in time. The eruption itself was of short
duration (~1 minute), but violent, and injured two
climbers. The phreatomagmatic eruption partially expelled
the crater lake, triggering two lahars down Ruapehu’s flanks
(see section Lahars, volcanic debris flows, floods and
jökulhlaups) (Figure 4) (Kilgour et al. 2010).

Phreatic eruptions Several definitions are available for
phreatic eruptions (e.g., Barberi et al. 1992; Mastin 1991;
Browne and Lawless 2001; Rouwet and Morrissey 2015,
and references therein) which are not necessarily mutu-
ally consistent. Phreatic eruptions are triggered by the
input of fluids and heat of magmatic origin into a shal-
low aquifer (sometimes into a lake), followed by over-
pressurization of the hydrothermal system, but without
the eruption of juvenile magmatic material (Figure 5). In
many cases, phreatic eruptions are ubiquitous precursors
to magmatic eruptions of both explosive or effusive na-
ture, or could serve as the decompression mechanism
prior to phreatomagmatic eruptions. Phreatic eruptions
often occur during prolonged periods of non-magmatic
hydrothermal unrest (e.g., Pisciarelli, Campi Flegrei), and
can occur as a single, major event, or as minor events
Figure 4 View of the Ruapehu summit area after the September 2007
the tephra fall; the open white arrow indicates the proximal deposit of the
phreatomagmatic eruption (filled white arrow) (Picture by Karoly Németh).
within a phreatic eruption cycle (Rouwet et al. 2014).
Given the state of hydrothermal unrest and the high
compressibility of fluid phases (gas, vapor and water),
precursory signals are buffered by the hydrothermal sys-
tem within the time-frame hydrothermal systems are
often monitored (yearly, monthly or weekly in the best
case). The input of mass and heat through a magmatic
fluid pulse into a shallow aquifer, the instigator of a
phreatic eruption, is often a short-term and too low-
amplitude event which passes unobserved within the time-
frame of monitoring set-ups, or discontinuous geophysical
surveys will not be able to detect a minute to hour-scale
sudden heat and fluid input. Continuous temperature
monitoring of hydrothermal systems (e.g., real-time FLIR-
imaging, T-gauging) could perhaps reveal a short-term
precursor for phreatic eruptions (Ramírez et al. 2013).
Secondary mineral precipitation after prolonged alter-

ation, or the presence of low-permeable elemental sulfur
can seal hydrothermal systems by reducing permeability
of country rock increasing the possibility of localized
pressurization, one of the possible constraints to reach a
pressure threshold prior to phreatic eruptive activity.
Monitoring the evolution of alteration mineralogy, micro-
gravity, hydrology and fluid geochemistry could lead to an
indication of the most probable locus and timing of a fu-
ture phreatic eruption.

Hydrothermal explosions Some volcano craters contain
subaerial or sublacustrine geyser-like boiling springs.
Geyser eruptions are boiling-point eruptions, which only
expel water (Mastin 1995). These non-violent eruptions
“surprise” phreatomagmatic eruption. The yellow arrow indicates
lahar, that was generated after partial crater lake expulsion due to the



Figure 5 Phreatic eruption at Poás volcano breaching the Laguna Caliente crater lake (Picture by A.B. Castro). Phreatic eruptions may
result in pyroclastic density currents and non-juvenile tephra fall out.
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occur when a buried fluid near boiling conditions is
depressurized leading to the creation of a bi-phase li-
quid–vapor mixture, expansion and, finally, explosion
(White 1967; Kieffer 1984). If we assume a constant
water recharge and heating during intereruptive periods,
what causes the cyclicity of geyser eruptions? A key
property of the geyser plumbing system is its heteroge-
neous geometry and/or permeability (Kieffer 1984;
Ingebritsen and Rojstaczer 1993, 1996). During reservoir
refill, this leads to a discontinuous rise in water level,
and thus a step-wise variation in hydrostatic pressure:
boiling will eventually occur when higher permeable
zones (e.g., fractures) are filled slowly, while boiling will
be suppressed when less permeable parts (e.g., narrow
conduits) are quickly filled (Kieffer 1984; Ingebritsen
and Rojstaczer 1993). Brown et al. (1989) and Dowden
et al. (1991) concluded that frequent (every 10 min) and
short (10 sec) geyser-like eruptions offered an efficient
means to dissipate energy at the 1985–1988 Laguna
Caliente crater lake (Poás volcano, Costa Rica). Overlying
liquid water will be disrupted when a submerged vent or
fumarole filled with vapor under pressure is subjected to a
pressure release paired with the water ejected upward
(Dowden et al. 1991). It is noteworthy that Laguna
Caliente passed a phase of lake level drop, due to
enhanced lake evaporation that steadily decreased the
hydrostatic pressure, teasing the underlying system with
near-boiling conditions, and thus potential geysering. Dur-
ing complete dry-out of the lake in 1989, Poás exhibited
nearly continuous geysering (Dowden et al. 1991). Since
2006, Laguna Caliente exhibits a similar behavior (Rymer
et al. 2009): a phreatic eruption cycle and contempo-
raneous lake level decrease. It sounds reasonable that the
ongoing periodical fluid injections in more peaceful
manner into Laguna Caliente are controlled in some way
by a geyser-like mechanism. Consequently, more powerful
eruptions at a crater lake are rather phreatic, which can
eventually destroy geyser plumbing systems.

Limnic Nyos-type gas release Deep lakes in maars, cra-
ters and calderas can become hazardous if they are fed
by gas-rich (mainly CO2) regional meteoric groundwater
(Tassi and Rouwet 2014). Due to the hydrostatic pres-
sure of the lake water column, the entering gas remains
dissolved in the lake bottom waters (hypolimnion). The
lethal gas (CO2 is an asfixiating gas, denser than air) can
be released from the lake when (1) the lake will periodic-
ally overturn during the cold season, when colder and
thus denser surface waters sink towards the lake bottom,
(2) the dissolved gas pressure at depth exceeds the
hydrostatic pressure (spontaneous release by supersatur-
ation), or (3) an external trigger disturbs the chemical
and thermal lake stratification (e.g., an earthquake, rock
fall into the lake, strong winds, internal waves, the sud-
den input of cold rain water during rainstorms, etc.) (see
Kusakabe 2015, for a review). Explosive gas release oc-
curred in 1984 and 1986 at Lake Monoun and Lake
Nyos (Cameroon), respectively. The Lake Nyos event
killed >1,800 people by CO2-asfixiation (Kling et al. 1987).
At the lake surface, “Nyos-type” lakes appear peaceful,

and the only way to recognize a potential CO2-accumu-
lation in bottom waters is by lowering a CTD-probe
(conductivity-temperature-depth), dissolved gas-pressure
probes, or by sampling the lake water at depth, followed
by chemical analyses (Tassi and Rouwet 2014). Once a
CO2-accumulation is recognized and the CO2 influx rate
is known, it can be estimated when such lakes reach
near-critical pressures of dissolved gases at depth
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(Kusakabe 2015). The only way to mitigate a limnic gas
burst is by artificially degassing the lake bottom waters,
lowering pipes into the deep water layers, inducing de-
gassing through the gas self-lift principle. Such pipes are
efficiently degassing Lake Nyos since 2001, leading to
safe gas contents in the near future (Kusakabe 2015).
Many of the deep volcanic lakes world-wide remain un-
studied, and it is thus unknown if these lakes are poten-
tially hazardous or not.

Hydrothermal non-eruptive unrest
Gas emission
An increase in volcanic degassing can occur by (1) gas ex-
solution upon decompression, when a deeper magma rises
towards the surface (Aiuppa et al. 2002, 2004), (2) dy-
namic magma convection inside the magmatic plumbing
system, driven by the density difference between lower-
density non-degassed and higher-density degassed magma
(Kazahaya et al. 1994), or (3) crystallization of a stagnant,
cooling magma batch and gas exsolution as the gas frac-
tion in the magma reservoir increases with respect to the
melt towards gas supersaturation (Oppenheimer 2011).
The first process will generally be accompanied by seismic
activity, deformation, variations in gas composition or
even magmatic eruptions, and indicate a state of magmatic
unrest, and is thus outside the scope of our review. The
second process can be responsible for long-term degassing
of large-volume magma bodies. Depending on the plumb-
ing systems and magma depth, magma convection can be
accompanied by signs of magmatic unrest (and eventually
eruptions, e.g., Stromboli), or not (e.g., prolonged high-T
fumarolic degassing). The third process is more complex
in terms of time, space and its effect on surface mani-
festations. Magma crystallization can occur without any
physical-chemical indicators measured at the surface, and
the crystallization history will only be revealed when the
magma is finally erupted. This type of degassing and re-
lated heat transfer, a necessary constraint to sustain a
hydrothermal system, can explain prolonged periods of
non-magmatic unrest, as there is no evidence of migration
from a magma reservoir. Depending on the crystallization
rate, depth and size of the magma batch, the period of
“gas unrest” can cover entire inter-eruptive periods of
volcanoes. Such unrest is often detected at passively de-
gassing, closed-conduit volcanoes, often with long-lived
active hydrothermal systems.
A few volcanoes are characterized by long-term, high-

temperature (700-900°C) fumarolic degassing without fur-
ther evidence of magma migration (e.g., Momotombo,
Nicaragua, Menyailov et al. 1986; Satsuma-Iwojima, Japan,
Shinohara et al. 1993, 2002; Kudryavy, Kuril Islands, Taran
et al. 1995). Despite the fact that magmatic temperatures
of the gases suggest the presence of a shallow magma
body (hundreds of meters or less), no recent eruptions
have occurred. The last major eruption at Satsuma-Iwojima
occurred ~500 years ago, and high-T fumarolic degassing is
reported for the past ~800 years (Shinohara et al. 2002). At
Momotombo, the last magmatic eruption occurred in 1905
(lava flow, Menyailov et al. 1986). Slow crystallization and/
or dynamic magma convection of a large stagnant magma
body can explain long-term degassing. A major question
remains: why do some high-temperature degassing volca-
noes pass through decade-long phases of non-magmatic
unrest, while other high-temperature degassing volcanoes
frequently evolve into magmatic unrest, or eventually cul-
minate into eruptive activity? The answer is probably found
in the magma volume and magma recharge rate: large
magma bodies with slow or absent magma refill will tend
to degas without evolving towards eruptions.
The release of acidic gas species (SO2, HCl, HF) dur-

ing prolonged degassing in a phase of non-magmatic un-
rest can reduce the quality of human activities near
volcanoes (e.g., agriculture, tourism) (van Manen 2014).
The presence of SO2 and HCl, clearly magmatic gases,
does not necessarily imply the migration of a magma, as
exsolution of both species can occur through the above
processes (2) and (3). For open-conduit volcanoes,
massive plume degassing can become very harmful (e.g.,
Masaya volcano, Nicaragua, Williams-Jones et al. 2003;
Martin et al. 2010; Merapi, Java-Indonesia, Zimmer and
Erzinger 2003), although in these cases magmatic unrest
is ubiquitous. Besides the direct hazardous impact of
acidic gas plumes, the absorption of acidic gases in
humid air can cause acid rain and the formation of
“dead zones” downwind volcano flanks (e.g., at Poás and
Turrialba volcanoes, Costa Rica) (Rymer et al. 2009; van
Manen 2014).

Acid contamination
The prolonged infiltration of acidic fluids into a volcanic
edifice dissolves the host rock and can lead to (1) mech-
anical instability of volcano flanks, and thus a higher
probability of flank failure (section Ground deformation),
or (2) the dispersion of contaminants (e.g., heavy metals,
fluorine, As, Hg, extreme acid waters) into the hydrologic
network and regional aquifers around a volcano (Sriwana
et al. 1998; Delmelle and Bernard 2000; Varekamp et al.
2001; van Rotterdam-Los et al. 2008; van Hinsberg et al.
2010). When such fluids are used for direct (drink
water) or indirect (irrigation) human consumption, en-
tering the food cycle, this long-term volcano-related
process poses a health risk for the surrounding people
(e.g., fluorisis, Löhr et al. 2005).
The most striking example of this situation is seepage

from the hydrothermal system beneath the crater lake
of Kawah Ijen volcano (Java, Indonesia), feeding the
Banyupahit stream (“bitter river”, Delmelle and Bernard
2000; van Hinsberg et al. 2010). Since the last magmatic
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eruption in 1817, Kawah Ijen has mainly been in a state of
non-magmatic unrest, with the occurrence of only phreatic
or geyser-like eruptions (Newhall and Dzurisin 1988).
Nevertheless, the volcano hosts the largest reservoir of
acidic surface water on earth, continuously fed by the input
of magmatic gases and volatilized metals (Delmelle and
Bernard 1994; Delmelle et al. 2000). Other examples, al-
though with less hazardous impacts, are Río Agrio (“bitter
river”) at Copahue volcano (Argentina; Varekamp et al.
2001), Río Agrio at Poás volcano (Costa Rica; Rowe et al.
1995), and Ciwidey river at Patuha volcano (Java, Indonesia;
Sriwana et al. 1998).

Ground deformation
Flank failure and sector collapse Acid fluids in volcanic-
hydrothermal systems dissolve volcanic host rocks.
Prolonged chemical leaching can finally result in physical
rock removal, when such fluids exit at the volcano flank
through acid saline thermal springs. Within the lifetime of
hydrothermal systems, this rock mass removal can modify
the morphology and weaken the mechanical stability of
the volcanic edifice, increasing the probability of ava-
lanches and sector collapses, even during periods of mag-
matic quiescence (Voight et al. 1983; López and Williams
1993; Kerle and van Wijck de Vries 2001; Reid 2004; Jolly
et al. 2014; Fournier and Jolly 2014). Intense fumarolic
activity at volcanic domes, not recently fed by a rising
magma, can weaken the mechanical stability of the dome,
eventually leading to collapse. Resulting pressure drop
after unloading of the volcano flank or dome can lead to
increased degassing or can trigger phreatic eruptions.
The best physical evidence of acidic fluid dispersion and
rock leaching within a volcanic edifice is given by seep-
ing crater lakes (Rowe et al. 1995; Kempter and Rowe
2000; Varekamp et al. 2001; Taran et al. 2008; Delmelle
et al. 2015).
Acid dispersion is an indication of eventual collapse-

prone sectors of a volcanic edifice, but the presence of a
less extreme hydrothermal system can already be sufficient
to cause massive edifice collapse (López and Williams
1993; Reid 2004). Fluid-pressure evolution within a het-
erogeneous volcanic edifice is extremely complex, and
depends on hydraulic (permeability and porosity) and
thermal properties of the rock (Reid 2004; Fournier and
Chardot 2012). To anticipate hazardous collapses inten-
sive monitoring of pore-fluid pressure in the hydrothermal
system and/or detailed deformation surveys (e.g., INSAR)
of the edifice are key.

Ground deformation due to hydrothermal activity
Long-term ground deformation often occurs at calderas
without the occurrence of an eruption, or clear signals of
magma migration (Rabaul, Papua New Guinea; Long Val-
ley Caldera, Evans et al. 2002; Lewicki et al. 2007b; and
“supervolcano” Yellowstone, USA, Dzurisin and Yamashita
1987; Werner and Brantley 2003; Lowenstern and Hurwitz
2008; Bergfeld et al. 2012; Chiodini et al. 2012; Lowenstern
et al. 2014; Campi Flegrei, Italy, Amoruso et al. 2014). The
discussion as to whether the unrest at Campi Flegrei
since the 1980’s is magmatic (Bianchi et al. 1987; Bonafede
et al. 1986; Gottsmann et al. 2006), or non-magmatic
(Casertano et al. 1976; Bonafede 1991; De Natale et al.
1991; Gaeta et al. 1998) is still ongoing. Recently, the ten-
dency to explain the uplift by the expansion of the under-
lying hydrothermal system has become more plausible as
it is supported by decade-long monitoring time series
(geochemistry, geodesy, geophysical surveys) (Chiodini
et al. 2001, 2003; Todesco et al. 2003), even though the de-
formation pattern may be explained by alternative models
(e.g., Amoruso et al. 2014). The Campi Flegrei unrest,
causing major concern also because the caldera is highly
populated, is an example of prolonged hydrothermal non-
eruptive unrest manifested as ground deformation paired
with diffuse degassing.
The most convincing argument to explain the uplift

phases at Campi Flegrei by hydrothermal circulation is an
observed time-lapse of ~100 days of increased diffuse de-
gassing following the uplift pulses (Chiodini et al. 2003).
This implies that both processes have a common cause,
which probably finds its origin in the input of a deep fluid,
which may or may not be released by the underlying
magma. The time-lapse between the “fast” deformation
and “slow” degassing is due to the difference between the
immediate elastic expansion of the highly altered rocks (De
Natale et al. 1991), and the slower fluid rise (Chiodini et al.
2003). An additional argument in favour of the hydrother-
mal system being the cause of the observed bradyseismicity
(ground deformation) is the thermal energy release by
steam injection into the shallow system, an order of magni-
tude higher than the energy release by seismicity. Within
the present view, as long as the Campi Flegrei caldera only
deforms and degasses, without the occurrence of volcano-
related seismicity (D’Auria et al. 2011), the current unrest
is better defined as non-magmatic hydrothermal unrest.
At Long Valley, following large seismic events and wide-
spread passive CO2 degassing there was debate as to
whether the inflation was magmatic or hydrothermal in
origin (Battaglia et al. 2003; Battaglia and Vasco 2006). A
full range of methods and monitoring techniques (geo-
physics, seismology, geochemistry) is needed to better
distinguish whether the cause of deformation is magmatic
or non-magmatic.

Non-magmatic tectonic unrest
A volcano enters in a state of non-magmatic tectonic un-
rest when a seismic event (e.g. tectonic earthquake or seis-
mic swarm) in the absence of any recognition of magma
migration, causes concern. Despite the probable absence of
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indicators, other than the tectonic event itself, volcanoes in
a delicate equilibrium (e.g., active hydrothermal systems)
could enter a state of tectonic unrest because of the seismic
event. Considering an already close-to-critical pressure
state, the physical equilibrium beneath mineral caps or
above chilling margins of magma bodies can be easily dis-
turbed by major tectonic earthquakes, which can induce
volcanic unrest (magmatic or not) or eventually trigger
phreatic or phreatomagmatic eruptions (Brodsky et al.
1998; Ichihara and Brodsky 2006; Manga and Brodsky
2006).
Within the scope of the present study, the introduc-

tion of seismic events as a possible “eruption or unrest
trigger” should be supported by (1) the probability of co-
incidence between an earthquake and an eruption, or an
earthquake and an evolution from volcanic quiescence
to unrest, and (2) the state of unrest of the volcano be-
fore the earthquake. Correlations between large tectonic
earthquakes and major volcanic eruptions up to dis-
tances of 500–1000 km are found, with time lapses be-
tween the earthquake and eruption even up to 30–35
years (Marzocchi 2002; Marzocchi et al. 2002, 2004b). It
is not excluded that lower magnitude earthquakes (espe-
cially if the epicentre is near the volcano), or major
earthquakes at larger distances could possibly affect the
state of unrest of a volcano (e.g., Walter and Amelung
2007). Detecting a change in the state of unrest caused
by an earthquake of any kind is a lot more subtle than it
is for extensively reported volcanic eruptions (e.g., in-
creased heat flux, Delle Donne et al. 2010). A major
problem in calculating the probability that the state of
unrest is changed by the earthquake is not only to know
how many times a volcano changed its state of unrest
due to the earthquake, but also to know how many
times the many other volcanoes did not change their
state of unrest, despite the earthquake. For this reason,
the pre-tectonic unrest state of the volcano should be
known for as many volcanoes as possible, as seismic
events are possible at any moment and place in a sub-
duction tectonic setting.
Coinciding seismic and eruptive activity has been re-

ported for hydrothermal systems and volcanoes in unrest
(Healy et al. 1965; Hurst and McGinty 1999; Christenson
2000; Christenson et al. 2007, 2010; Ohba et al. 2008; Watt
et al. 2009). The time lapse between the tectonic earth-
quake and the eventual variation in the behaviour of the
volcano causing concern, can be short (hours to days) or
long (weeks to months, to even several years, Marzocchi
2002; Eggert and Walter 2009). A short time lapse between
tectonic earthquakes and volcanic events is observed for
the November 1964 and 2006 Raoul crater lake breaching
eruptions (7 days after, Healy et al. 1965; Christenson et al.
2007), for post-earthquake deformation and increased seis-
micity at Long Valley Caldera (within 5 days after, Linde
et al. 1994), for increased heat flow from volcanoes world-
wide after major tectonic earthquakes (>Mw 7.9) (3–5 days
after, Delle Donne et al. 2010), and for a phreatic eruption
at Laguna Caliente crater lake, Poás volcano (Costa Rica),
four days after a Mw 6.2 earthquake at 6 km from the vol-
cano in January 2009.
Not surprisingly, the dynamic stress created by the seis-

mic surface wave is a major cause in disrupting the deli-
cate equilibrium in magmatic-hydrothermal systems (Hill
2008; Delle Donne et al. 2010) switching from hydrother-
mal to tectonic unrest.

Event tree for non-magmatic unrest
Figure 6 proposes the structure of the non-magmatic un-
rest branch of the event tree that, for now, serves as a clas-
sification system for non-magmatic unrest. The branch
first discriminates between a hydrothermal and tectonic
state of unrest.
Many volcanoes experience a hydrothermal unrest phase

that lasts for years, decades or even centuries, which can
eventually evolve into eruptive or non-eruptive activity
and related hazardous outcomes. This long-term constant
behavior often makes it difficult to recognize how hydro-
thermal unrest can lead to related hazards in the short-
term. Hydrothermal unrest can lead to non-magmatic
eruptions, which can be explosive or effusive. Where the
driving agent in magmatic eruptive unrest is magma, water
(liquid or vapor, and occasionally liquid sulfur or gas) is
the driving fluid and main eruptive product during non-
magmatic eruptive unrest. This water is part of the vol-
canic edifice or its subsurface parts (i.e., hydrothermal
aquifers, springs, rivers or crater lakes), and its expulsion
can be effusive or explosive (phreatic, “surprise” phrea-
tomagmatic, geyser-like water explosions and Nyos-type
limnic gas burst). On the other hand, non-eruptive hydro-
thermal unrest can also lead to volcanic hazards after pro-
longed gas emission, acidic fluid infiltration into aquifers,
soils and the hydrologic network, or deformation induced
by a rising fluid front (i.e., bradyseismicity).
A state of non-magmatic unrest can be also charac-

terized by the occurrence of earthquakes, unrelated to
magma migration. Non-magmatic tectonic unrest can es-
calate into non-magma related seismic activity, or earth-
quake triggered tsunamis at subaqueous volcano flanks.
In the next sections, we follow that structure of the pro-

posed event tree (Figure 6) to enumerate all potential haz-
ards that such phenomena may cause in volcanic areas. In
doing so we try to organize the potential hazards related
to non-magmatic phenomena in order to provide the basis
for a probabilistic quantification of the related hazards.

Major hazards related to non-magmatic unrest
Within the classification purpose of this review, the hazard-
ous event can (1) only result from the previous causative



Figure 6 Proposed event tree for non-magmatic unrest. An event tree for magmatic unrest (BET_EF; in grey) is dealt with in previous studies
(Marzocchi et al. 2004a, 2008; Sandri et al. 2009, 2012).
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conditions (followed track) imposed by the event tree struc-
ture, and (2) not occur contemporaneously with another
hazardous event, resulting from a different track. As the
aim is to include all possible tracks that possibly lead to a
hazard, all branches of the event tree have to exist and be
possible at all time. A key point is that we do not know
which track will be followed by the volcano and each new
signal of the volcano challenges the user of the event tree
to update and possibly even change track towards a differ-
ent hazard, when describing non-magmatic unrest.
From the event tree structure it is clear that mass re-

moval events (e.g. lahars, flood, tsunamis, ground deform-
ation, jökulhlaups and flank collapses) can have several
causes, depending on the state of unrest the volcano
passes through. This principle gets even more complicated
if external water (e.g., torrential rain ) disturbs the state of
unrest of a volcano. Besides having implications for future
probabilistic hazard assessment, the potential for external
water to influence the system highlights the need to a lar-
ger variety of monitoring methods, both internal (e.g., to
better track hydrothermal activity) and external to the vol-
cano (e.g., to track the weather). We now scan the event
tree from right to left (Figure 6), to recognize indicators of
non-magmatic unrest as we should aspire to track in mon-
itoring networks.

Pyroclastic density currents and tephra fall out
Phreatomagmatic and phreatic eruptions may result in
pyroclastic density currents (PDC) and tephra fall out. The
1963 Surtsey eruption off the coast of Iceland is the first
well-documented phreatomagmatic eruption (Thorarinsson
1967) to show eruption dynamics. Phreatomagmatic and
phreatic eruptions are short-lived explosions accompanied
by an upward rush of black tephra (Kokelaar and Durant
1983) jets spread into cockscomb or cypress tree shapes
(Kokelaar 1983) (Figure 5). Water-dominated hydrothermal
systems (e.g., crater lakes, submarine settings) favor the
generation of Surtseyan eruptions (Rouwet and Morrissey
2014a,b). During the phreatomagmatic eruptions at Lake
Voui on Ambae Island in 2005, a tuff cone was constructed
from material deposited from subaerial tephra jets leading
into subaqueous PDCs after column collapse (Németh
et al. 2006). Base surges are also common features that
accompany tephra jets (Belousov and Belousova 2001;
Németh et al. 2006). Phreatic eruptions appear extremely
similar in morphology and dynamics (explosivity, Figure 5)
but lack the injection of magma. The main distinction is
the absence of juvenile material in the erupted products.

Lahars, volcanic debris flows, floods and jökulhlaups
A lahar consists of high-concentration sediment-charged
flows that occur at volcanoes (Scott 1988; Manville et al.
2009; Pistolesi et al. 2014). Lahars are generated when
three requisites are met: (1) a trigger mechanism that
provides a sudden availability of sufficient water, (2) the
presence of abundant loose volcanic debris along the
flow path, and (3) steep slopes to increase gravitational
flow (Vallance 2000; Pistolesi et al. 2014). Lahars can be
primary or secondary. The former are instigated by
eruptive activity (e.g., Nevado del Ruíz 1985, Pierson
et al. 1990), and thus within a stage of magmatic unrest.
The latter result from post-eruptive mobilization of un-
consolidated volcanic debris (e.g., de Bélizal et al. 2013),
sometimes even originating from a neighboring erupting
volcano. The indefinite time between the eruption and
the secondary lahar implies that the volcano can have
re-entered into a state of non-magmatic unrest or even
non-unrest, or that the occurrence of the lahar itself is
independent of the actual state of unrest of the volcano.
Any process that suddenly liberates large amounts of

water other than a magmatic eruption can trigger a lahar
within a state of non-magmatic unrest. Rainfall-triggered
lahars are arguably the most hazardous secondary events
at volcanoes (e.g., Volcán de Fuego de Colima, Mexico,
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Capra et al. 2010, post-1991 Pinatubo eruption, Philippines,
Pierson et al. 1992; Rodolfo et al. 1996; post-1965 Irazú
eruptions, Costa Rica, Pavanelli 2006). Another frequent
hazardous scenario to generate lahars are sudden expul-
sions of crater lake water after phreatic eruptions or crater
failure (Mastin and Witter 2000; e.g., 1919, 1966, 1990
Kelud eruptions, Indonesia, Neumann van Padang 1960,
Zen and Hadikusumo 1965; Thouret et al. 1998; 1965 Taal
eruption, Philippines, Moore et al. 1966; Ruapehu 2007,
Kilgour et al. 2010).
Increased heat transfer from a hydrothermal system

into a glaciated volcanic edifice can lead to sudden ice
melt. In general, any snow-capped volcano is lahar-
prone even during stages of non-magmatic unrest, when
sudden snow melt is induced (e.g., Cotopaxi, Ecuador,
Hall et al. 2004; Mothes et al. 2004, Pistolesi et al. 2013,
2014). For snow-covered summits of crater lake bearing
Figure 7 Picture of the natural “snow dam” blocking the newly forme
the snow mass to generate a lahar/jökulhlaup downstream in early 2005 (S
Observatory, US Geological Survey).
volcanoes entrainment of ice-slurry along the lahar flow
path can also provide an additional water source (e.g.,
1953, 1995 and 2007 Ruapehu eruptions, New Zealand;
Nairn et al. 1979; Blong 1984; Cronin et al. 1997; Kilgour
et al. 2010). A less hazardous scenario may include a
newborn crater lake which fills a pre-existing previously
snow-covered summit crater, with potential to eventually
breach or overflow if melt water input continues (e.g.,
Chiginagak-2005, Alaska, Schaefer et al. 2008) (Figure 7).
A more hazardous case is a subglacial lake with sudden
and catastrophic melt water release which results in a
jökulhlaup. Jökulhlaup is an Icelandic term and refers to a
subglacial outburst flood (Björnsson 2002). The remaining
ice mass can be entrained to add bulk mass to the flood,
besides the entrainment of rock mass. Jökulhlaups can re-
sult from seasonal ice melting, heat input (non-magmatic
unrest) or subglacial volcanic eruptions (magmatic unrest).
d Chiginagak crater lake, Alaska. Lake water drained at the base of
chaefer et al. 2008) (Picture by Game McGimsey, Alaska Volcano
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Jökulhlaups can probably be forecast by tracking volume
decrease in ice mass, or increased temperatures.

Tsunamis and seiches
A tsunami occurs when a large body of water is suddenly
displaced from its equilibrium position, generating long
waves which propagate with a low energy loss from deep
to shallow waters, where they rapidly decrease in velocity
and reach high amplitudes in coastal areas. Volcano-
related tsunamis can be associated with a variety of vol-
canic activities, such as submarine explosions in shallow
waters, dense pyroclastic flows entering in the water and
submarine mass movements. Within the context of the
present study, these volcanic activities are often associated
with magmatic unrest. Non-magmatic unrest phenomena
are often slow and continuous, suggesting that non-
magmatic unrest manifestations (apart from phreatomag-
matic and phreatic eruptions) are not advantageous for
tsunami triggering, however, tsunamis can also be gener-
ated as a secondary effect of non-magmatic outcomes (e.g.,
mass failures and PDC). In general, tsunamis due to vol-
canic activity remain a poorly investigated field, with only a
few recent studies (e.g., Maeno and Imamura 2007, 2011;
Paris et al. 2014).
Seiches are standing waves mostly due to meteoro-

logical effects (e.g., atmospheric pressure variations), but
also due to earthquakes or tsunamis. They may occur in
closed or partially closed basins, as such, lake seiches are
most common. Seiches form as waves move back and
forth hitting lake basin walls (Ichinose et al. 2000).
When a phreatic eruption disrupts a crater lake basin,
waves concentrically move outwards from the centre of
initial water mass displacement (Figure 5). The wave
height of the seiches at the lake shore depends on the
violence of the trigger, lake water volume, and basin
morphology. Similarly, seiches have also been observed
also in open sea bays, harbors and gulfs, where natural
resonant oscillations are permitted by the basin geom-
etry. Tsunami and seiches related to volcanic activity are
very rare events, nonetheless their impact could be ex-
tremely high, depending on specific conditions of the
event (e.g., dominant wavelength, period).

Conclusions
In this review paper we have attempted to categorize
non-magmatic unrest, and have sought to describe indi-
cators how to recognize non-magmatic unrest. With the
aim to classify non-magmatic unrest features, we pre-
sented an event tree structure with a progressive level of
detail along various tracks towards hazardous outcomes.
This implies that, beyond the current classification, the
non-magmatic unrest branch in the event tree could be-
come the base for future probabilistic hazard assessment
at any type of volcano, regardless of its state of unrest.
The role of gas and water (liquid or vapor) instead of
magma as the driving agent for unrest is stressed. Many
volcanoes experience a prolonged stage of hydrothermal
unrest, which can alter the hydraulic and rock mechan-
ical properties leading to destabilization of a volcanic
edifice. Recognizing an increase in vapor pressure in
hydrothermal systems may provide warning of phreatic
eruptions. A sudden release of water from an aquifer or
lake, or intense rainfall, can trigger lahars when these
mobilize poorly consolidated volcanic deposits or altered
sections of a volcano.
Hydrothermal unrest is the most obvious expression of

non-magmatic unrest, which could eventually lead to haz-
ardous outcomes. Tracking temporal variations in fluid
migration, hydraulic pressure regimes, as well as variations
in temperature and chemical compositions of fluids (gas
and water) could help to forecast hazardous outcomes.
This means that traditional monitoring schemes (seismic-
geodetic-geochemical) should be expanded to include
other monitoring methods that might reveal precursory
signals of non-magmatic volcanic hazards.
Moreover, we do not know if many of the ~1300

poorly studied Holocene active volcanoes are in a state
of non-magmatic unrest, and thus, as stressed by this
study, could be potentially hazardous. Knowing whether
a volcano is dormant, in a state of quiescence, or in a
state of non-magmatic unrest is a first requisite for haz-
ard forecasting. This basic principle could guide future
monitoring strategies for those volcanoes that are poten-
tially more hazardous than currently thought. We invite
the scientific community to define and track the back-
ground behavior of many poorly studied, but potentially
hazardous volcanoes in order to recognize, in a timely
manner, a state that raises concern.
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