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Abstract

This paper introduces an open source computer code to perform an integrated probabilistic spatio-temporal
volcanic hazard assessment in distributed volcanic fields. The program, named MatHaz, is a set of Matlab scripts
that follows a sequential methodology. After the user has provided a set of input files, this tool first estimates the
spatial probability of future volcanic vents, then the temporal probability of future volcanic events, and finally
models up to five volcanic phenomena (pyroclastic density currents, ballistic projectiles, lava flows, lahars, and
tephra fallout) following a probabilistic approach. These results can be combined and depicted as an integrated
quantitative (and/or qualitative) volcanic hazard map, with weightings of hazard factors chosen by the user. We
illustrate the use of this tool by applying it to the Carrán-Los Venados Volcanic Field in southern Chile. The open-
source, replicable, and user-friendly nature of the code allows its application to any volcanic region of the world,
regardless of its extent, type, and amount of volcano-structural data.

Keywords: Matlab, Spatial probability analysis, Temporal probability analysis, Probabilistic volcanic hazard
assessment, Integrated volcanic hazard map

Introduction
At present, apart from analyses of vent location and/or
onset time of eruption, few volcanic hazard assessments
in volcanic fields have dealt with the distribution of
specific eruptive hazards. This strong bias towards
spatial and temporal assessments is mainly due to the
difficulty in addressing, in a single assessment, the mul-
tiple volcanic phenomena that might be produced by
any subsequent eruption. Some attempts concentrate on
a single volcanic phenomenon, mainly pyroclastic dens-
ity currents (PDCs; Sandri et al. 2012; Neri et al. 2015)
and lava flows (Connor et al. 2012; Gallant et al. 2018);
there are very few studies that have included several
volcanic phenomena (Alcorn et al. 2013; Bartolini et al.
2014, 2015; Becerril et al. 2014, 2017; Sandri et al. 2014).
Integration of multiple hazards into a single map has
only been carried out qualitatively (or in one-off scenario

events), because a quantitative procedure for hazard
integration has been lacking.
There is much past work on estimating the distribu-

tion of volcanic phenomena via computer modeling.
Indeed, the volcanological literature includes numerous
analytical, empirical and numerical models that simulate,
with strongly varying degrees of detail and sophistica-
tion, specific volcanic phenomena. In general, the more
sophisticated the model is, the longer the execution
times. This is a challenge for hazard assessment in
volcanic fields where there are many potential vents,
adding an extra complexity, so that a strategy to ad-
equately (and timely) assess multiple volcanic phenom-
ena is desirable. This strategy places a premium on
simplified models that are easy to manage and replicate
and quick to execute, acknowledging that by meeting
these conditions model resolution is lost.
In order to address the challenge of assessing hazard

in volcanic fields, this paper introduces an open source
computer code, named MatHaz, developed to carry out
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an integrated (quantitative and/or qualitative) spatio-
temporal volcanic hazard assessment for multiple vol-
canic phenomena. The way in which this model works
can be summarized in three sequential steps. The first
step combines all the volcano-structural data provided
by the user and produces a map of spatial density of
vent-location. The second step performs a temporal
probability analysis with the eruptive record provided by
the user, combining it with the spatial analysis to gener-
ate maps showing the probability of vent opening within
specific time intervals. The third step separately models
up to five volcanic phenomena (PDCs, ballistic projec-
tiles, lava flows, lahars, and tephra fallout) based on the
spatio-temporal analysis. All these results can be merged
into a volcanic hazard map that displays the probability
that a specific area is affected by any of the modeled
volcanic processes in a specific time interval.
Our sequential approach is implemented in Matlab, en-

abling ease of use (compared to compiled codes) and repli-
cation. Being an open source code, the user can test and
modify the files at any step, either to include other models
or to migrate its routines to other programming languages.
The intended users of MatHaz are researchers who

need to make hazard maps for volcanic fields, in order
to either provide a regional context for hazards, or to
rapidly develop a broad perspective on the hazards. This
means that unlike other hazard simulation codes,
MatHaz has not been developed to model the physics of
volcanic eruptions and their products, or to model the
details of specific eruptive scenarios.
Here, we introduce the model and illustrate its use by

applying it to the Carrán–Los Venados Volcanic Field, a
well-studied volcanic field in southern Chile.

Background
Distributed volcanism
Volcanic regions characterized by distributed volcanism
are common on Earth. Volcanic activity in these regions
frequently consists of individual (i.e., monogenetic),
basaltic to basaltic andesitic, small-volume (< 1 km3)
eruptions, characterized by episodic periods of activity
that can last up to several years (Németh 2010; Keresz-
turi et al. 2013; Le Corvec et al. 2013; Valentine and
Connor 2015). Over time these eruptions tend to form
volcanic fields, built of scoria cones, maars, tuff cones,
tuff rings, small shields and/or lava flows (Valentine and
Gregg 2008; Valentine and Connor 2015). The life span
of a distributed volcanic field can cover millions of years,
suggesting recurrence rates on the order of 10− 4–10− 5

events/year, very low compared to the frequencies of
eruptions at individual composite volcanoes (Németh
2010; Kereszturi et al. 2013; Valentine and Connor 2015).
Hence, every new eruption is a rare phenomenon (Connor
et al. 2018), so is typically treated in temporal hazard

models using a renewal process based on the history of
past eruptions (Bebbington and Cronin 2011). A greater
challenge is forecasting the location of future events in
volcanic fields, because they frequently occur in com-
pletely new locations, often unrelated to time-sequence
(Bebbington and Cronin 2011; Connor et al. 2018). For
this reason, over the last 50 years several probabilistic and
geological approaches have been applied to forecast the
location, timing, type, and impacts/effects of future vol-
canic events in distributed volcanic fields.

Spatial, temporal, and volcanic hazard assessments
Spatial analyses for modeling possible locations of future
volcanic events in regions of distributed volcanism have
usually been carried out via kernel density estimation
(Connor et al. 2018, and references therein). This is a
non-parametric statistical method for estimating the prob-
ability density function (PDF) of a distributed sample (e.g.,
volcanic vents) in which the statistical parameters that
rule it are unspecified. In volcanology, the most frequently
used kernel functions are the radially symmetric (i.e., iso-
tropic) and the elliptical (i.e., anisotropic) Gaussian kernels
(Connor et al. 2012, and references therein). Both assume
that the volcanic region has no boundaries, which is hard
to reconcile with geological and/or geophysical evidence
in some volcanic fields supporting a tectonic, magmatic or
lithological control on the distribution of the volcanic
vents (Connor et al. 2000; Martin et al. 2004; Germa et al.
2013; Deng et al. 2017).
Many models share an approach that recognises that

inter-event variability lies generally within the con-
straints of long-term patterns in time, space, and style
exhibited over the history of a volcanic field (Connor et
al. 2015, and references therein). However, this is only
reliable if long records are known, if dating is good, and
if there are stable tectonic/volcanic conditions. In many
cases, strongly time-variant behaviour occurs, which
may affect frequency, location, and size of eruptions
(Bebbington and Cronin 2011). In consequence, fore-
casting the rate of activity in volcanic fields can be a
difficult task to accomplish (Bebbington and Cronin
2011; Runge et al. 2014; Richardson et al. 2017a). A
comprehensive review is provided by Bebbington (2012),
who grouped several classes of stochastic models into
three categories: stationary, stationary with covariates,
and non-stationary models, depending on how the in-
tensity of the volcanic process varies with time. For vol-
canic fields with low recurrence rates (e.g., Auckland
Volcanic Field, ~ 10− 4 events/year; Bebbington and
Cronin 2011), or scarce temporal data (e.g., Harrat Al-
Madinah; El Difrawy et al. 2013), it is usually assumed
that the temporal component of the hazard assessment
is independent of the spatial component (Bebbington
2013, 2015). Following this assumption, a long-term
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average recurrence rate (a stationary model) can be
calculated for the whole field based on the number of
events over a specific time interval, which has been a
common approach for several volcanic fields (e.g., El
Difrawy et al. 2013; Runge et al. 2014; Bartolini et al.
2015; Gallant et al. 2018; Nieto-Torres and Martin Del
Pozzo 2019).
Several techniques to integrate multiple background

data have been developed during the last few years (e.g.,
Cappello et al., 2012, 2013; Alcorn et al. 2013; Becerril et
al. 2013, 2014, 2017; El Difrawy et al. 2013; Bartolini et
al. 2014, 2015; Gallant et al. 2018; Jiménez et al. 2018).
Most of these approaches apply a similar statistical treat-
ment of the available volcano-structural information
resulting in spatial density maps showing the probability
of vent location. In general, only the results obtained
after the spatial analysis have been used as inputs for
any subsequent volcanic hazard assessment, mainly
because a temporal analysis was not conducted, and if it
was, its results were not combined with those of the
spatial analysis. In these studies the simulated volcanic
processes have been restricted to: PDCs, lava flows,
lahars and tephra fallout, i.e., ballistic projectiles are
absent. Finally, in cases where the modeling results are
combined, this has been done either via superposition or
following a qualitative procedure for which the method-
ology has not been clearly stated.

Existing models and research gaps
A single package allowing the modeling of several vol-
canic processes for distributed volcanism was previously
attempted in a Geographical Information System (GIS)
framework (Felpeto et al. 2007). This tool, named
VORIS, is able to determine the spatial probability of
vent opening and to simulate lava flows, PDCs, and
tephra fallout. The program has to be loaded as a tool-
bar in ArcMap (up to version 9.3) and a complete user’s
guide is provided. VORIS was a pioneer initiative in in-
cluding different simulation tools in a single framework
and it is still frequently used in volcanic hazard assess-
ments (e.g., Alcorn et al. 2013; Bartolini et al. 2015;
Becerril et al. 2017). However, this program assumes a
unique scalar bandwidth for the spatial probability ana-
lysis, does not perform a temporal analysis, does not
model either ballistic projectiles or lahars, and it is not
possible to combine hazards into an integrated map.
The code is not open access and therefore editing and
testing of the program are not possible.
The QVAST tool (Bartolini et al. 2013) goes a step fur-

ther in terms of estimating the spatial probability of vent
opening. This is a Quantum GIS (QGIS) plugin useful
for estimating the spatial density of future volcanic vents
based on volcano-structural data. The program is able to
use different methods to calculate the bandwidth of

every volcano-structural dataset, after which each prob-
ability map is weighted and combined into a single
spatial density map. Its main advantages are its user-
friendly interface and its development for the free and
open-source geographic information system QGIS. How-
ever, QVAST mainly works with scalar bandwidths and
the user cannot access the code. It also requires other
tools to perform temporal and individual hazard ana-
lyses, so it has been commonly coupled with the VORIS
tool for volcanic hazard assessments (e.g., Bartolini et al.
2015; Becerril et al. 2017; Jiménez et al. 2018).
More recently, some computer codes have been

uploaded to the GitHub hosting service (https://github.
com/geoscience-community-codes ). This platform allows
the user to conduct a spatial probability analysis of vent
opening as well as to simulate lava flows (MOLASSES
tool; Richardson et al. 2017b), PDCs (Energy cone model;
Malin and Sheridan 1982), and tephra fallout (Tephra2
code; Bonadonna et al. 2005a). Unlike VORIS and QVAST,
the user can freely access these codes. Some advantages
are that, in the spatial probability analysis, the code auto-
matically runs the scripts for obtaining the bandwidths,
and that simulations for each volcanic process can be run
online. Some drawbacks are their different programming
languages for different volcanic processes (i.e., integration
is not possible), the inability to model either ballistic pro-
jectiles or lahars, and that the user cannot upload any-
thing, including topography.

MatHaz code
MatHaz consists of six files written in Matlab. To start
the program, the file MatHaz.m has to be run in the
Matlab command window. A flowchart describing
MatHaz is shown in Fig. 1.
The first operational step of MatHaz is to decide on the

analysis type: probabilistic spatial, spatio-temporal or vol-
canic hazard assessment. A full probabilistic spatio-
temporal volcanic hazard assessment includes a base step
and three sequential steps, each of which has to be run
separately. The base step (called here ‘Step 0’; Fig. 1a),
loads the file MatHaz0.m and generates several text files
(.txt extension) based on the volcano-structural data pro-
vided by the user, which then have to be loaded individu-
ally into the statistical program R and their results noted
in the file MatHazR.m. The first step (‘Step 1’; Fig. 1b)
loads the file MatHaz1.m, reads the file MatHazR.m, and
produces a spatial density map by estimating the probabil-
ity of vent opening. The second step (‘Step 2’; Fig. 1c)
loads the file MatHaz2.m and performs a temporal prob-
ability analysis, generating a spatio-temporal map showing
the spatial probability of vent opening within a specific
time interval. The third step (‘Step 3’; Fig. 1d) loads the file
MatHaz3.m and models separately PDCs, ballistic projec-
tiles, lava flows, lahars, and tephra fallout based on the
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spatio-temporal analysis. Finally, these results can be
merged, quantitatively and/or qualitatively, into a prob-
abilistic volcanic hazard map showing the probability that
a specific area is affected by any volcanic process over a
specific time interval.
In MatHaz, the spatial density analysis is based on the

kernel density estimation method, whose theoretical
framework is found in Appendix 1.
This computer code is tested using the Carrán-Los

Venados Volcanic Field in southern Chile. For this

example, five volcano-structural datasets were ac-
quired from the geological knowledge of the area
(Additional file 1). Local topography was based on
an Advanced Spaceborne Thermal Emission and Re-
flection Global Digital Elevation Model v2, with a
spatial resolution of ~ 30 m for the study area and a
vertical accuracy of 17 m within the 95% confidence
interval (Gesch et al. 2011), from which a topo-
graphic matrix of 50 × 40 km with a pixel size of
100 m was extracted (Additional file 3).

Fig. 1 Flowchart depicting the procedure for a full probabilistic spatio-temporal volcanic hazard assessment. a Step ‘0’ (Data files for R) and Step
‘0.5’ (R). b Step ‘1’ (Spatial probability analysis). c Step ‘2’ (Temporal probability analysis). d Step ‘3’ (Probabilistic volcanic hazard analysis) and Step
‘3.5’ (Integration). White rectangles show all the commands, files and products/subproducts created for each step. Grey rectangles depict the
outputs of each step that will be used as inputs for any subsequent step. Solid lines with arrows are shown where the program performs the
routine automatically. Dashed lines with arrows are shown where the user has to define the input parameters
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The following section presents a brief geological sum-
mary of the Carrán-Los Venados Volcanic Field, focused
on its eruptive record as well as the derivation and justi-
fication of each volcano-structural dataset used here.
The subsequent section describes the application of
MatHaz to this volcanic field.

Case-study: Carrán-Los Venados volcanic field
Geological background
The Carrán–Los Venados Volcanic Field (centered at
40.37°S, 72.14°W; 300 m a.s.l.), hereafter CLV, is a vol-
canic cluster located in Chile, in the central segment of
the Southern Volcanic Zone (SVZ) of the Andes (Fig. 2).
CLV consists of at least 64 scoria cones and maars,

with ages from the Upper Pleistocene to three recent
events in 1907, 1955, and 1979. Vents are aligned in a
general ENE orientation, and some are associated with
14 to < 1 km-long lava flows and/or up to 6 km-long
PDC deposits, spanning an area of about 160 km2.
The local basement consists of Paleozoic to Miocene

intrusive, metasedimentary, and volcano-sedimentary
rocks (Campos et al. 1998; Rodríguez 1999). The north-
ern boundary of the CLV is marked by the Los Guindos
stratovolcano, and the southern boundary by products
from the Mencheca, Cordillera Nevada, and Cordón
Caulle volcanic complexes, all Mid-to-Late Pleistocene
in age (Campos et al. 1998; Lara and Moreno 2006). The
early history of the CLV is poorly known, since much of
the area was covered by glaciers as recently as ~ 17 ka
(Moreno et al. 2015), so the volcanic record is more reli-
able in post-glacial times (Bertin et al. 2018; Bertin and
Moreno in press). The earliest product of the CLV is a
basaltic lava that fills the Nilahue River valley for about
14 km, reaching Lake Ranco (Bertin et al. 2018). After
this effusive episode, at least 70 basaltic to basaltic an-
desitic eruptive events have been identified, producing
tephra fallout, pyroclastic surges, ballistic ejecta, rain-
triggered lahars, and/or short (up to 3 km long) lava
flows (Bertin et al. 2018; Bertin and Moreno in press).
The CLV area is cut by the main trace of the NNE-

trending Liquiñe-Ofqui Fault Zone (LOFZ). This is a
1200 km-long, transpressional dextral strike-slip fault
system that dominates the intra-arc region between 38°
and 47°S (Cembrano et al. 1996; Rosenau et al. 2006).
This fault zone has strongly influenced volcanic activity
for the last ~ 6Ma (Cembrano and Lara 2009). Further
local-scale NW-striking fault zones are documented in
this area (Campos et al. 1998; Lara et al. 2006), inter-
preted as crustal-scale weaknesses associated with an-
cient faults that reactivated as sinistral-reverse strike-slip
faults during arc development (Lara et al. 2006; Rosenau
et al. 2006; Glodny et al. 2008; Lange et al. 2008). In
addition, an ENE-trending system of small faults is in-
ferred based on morphologic lineaments (Bucchi et al.

2015). Although the kinematics of these features are not
well constrained, the orientation of the ENE system
suggests extension under the current stress field (cf.
Cembrano and Lara 2009). The three modern vents are
located close to where these ENE lineaments intersect
the main trace of the LOFZ (Bucchi et al. 2015).

Volcano-structural datasets
Volcanic vents
Sixty four volcanic vents are identified in the CLV
(Fig. 3a; Bertin et al. 2018; Bertin and Moreno in press),
mainly consisting of scoria cones and maars. In parallel,
up to 70 eruptive events, mainly strombolian and phre-
atomagmatic, have been described to date and proposed
to be related to CLV activity (Bertin et al. 2018). This
suggests that some vents may have either erupted more
than once and/or been buried by subsequent eruptions
(e.g., Wetmore et al. 2009), by sedimentation (e.g.,
George et al. 2015), or overlooked during mapping. Due
to lack of further evidence, it was assumed in our test
case that every volcanic vent represents a single event.
Twenty nine eruptive events attributed to the CLV are

14C dated (Bertin et al. 2018, and references therein).
The best-exposed eruptions have been tentatively linked
to specific vents based on their distribution and facies
(Bertin et al. 2018). We combined these data with a pre-
liminary morphological assessment to make a first-order
estimation of the absolute age of every vent (cf. Nieto-
Torres and Martin Del Pozzo 2019). Hence, every vent
was assigned an absolute age (with no age uncertainties)
noted as years before 2019. Although we acknowledge
that a more sophisticated treatment of the age data (e.g.,
including age uncertainties; Connor et al. 2013) should
be followed if a probabilistic hazard assessment is
envisioned, this approach was deemed adequate for the
purposes of our application.

Thermal anomalies
In active volcanic areas, the presence of hot water
ponds, heated ground and/or fumarolic activity can re-
flect heating of shallow aquifers from magma at depth
(Goff and Janik 2000; Eppelbaum et al. 2014). These
geothermal fluid sources can be further disturbed by
shallow magmatic intrusions, leading to phreatomag-
matic or phreatic eruptions (Germanovich and Lowell
1995; Valentine et al. 2014). The ample evidence for
phreatomagmatic eruptions at CLV (Bertin et al. 2018)
suggests that the identification of thermal anomalies can
be used to estimate the location of future volcanic
activity (Bartolini et al. 2014).
Geothermal field studies conducted in the zone have

identified a single area of hot water ponds (up to 60 °C),
located a few kilometres east of the main trace of the
LOFZ (Lemus et al. 2015, and references therein). In
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parallel, thermal infrared remote sensing analyses based
on satellite imagery (spatial resolution of ~ 90m) have
found that this whole volcanic region has thermal anomal-
ies with temperatures higher than 3 °C (Lemus et al. 2015)
. Taking this into account, only those pixels with anomal-
ies in temperature higher than 10 °C were considered in a
recent hazard assessment by Bertin et al. (2018) and used
in this study, which results in 52 hotspots (Fig. 3b).

Earthquake epicentres
Seismic analyses at CLV started in 2007 with initially
four broadband stations (two near-field and two far-

field). In 2011 new stations were added due to the explo-
sive eruption of the neighbouring Cordón Caulle volcano
(Bertin et al. 2015). Currently, eight near-field and two
far-field seismic stations monitor in real time this vol-
canic field. According to the Chilean Geological and
Mining Survey (SERNAGEOMIN), five volcano-tectonic
events per month have been recorded in average, with
local magnitudes (ML) of up to 3.1 and depths between
2 and 10 km (Bertin et al. 2018).
Seismic events are mainly concentrated along the main

trace of the LOFZ and some other lineaments, suggest-
ing that they are caused by brittle failure or shear

Fig. 2 Location map of the CLV at 1:1,000,000 scale. Red triangles outside the CLV indicate other active Chilean volcanoes. Inset shows the location of
the figure with respect to the main volcanic segments of the Andes, as well as the main tectonic structures, drawn at 1:30,000,000 scale
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fracture along tectonic fault planes. As these structures
represent zones of weakness, they can be potential
magma pathways, especially if they are seismically active
(Cembrano and Lara 2009). Consequently, volcano-
tectonic events can highlight those fault segments that
are active at present (Cappello et al. 2012). In our CLV
case, the epicentres of all >ML 0.1 seismic events with
depths < 5 km and recorded after 2010 were selected for
our application, which results in 27 events (Fig. 3c).

Faults, fractures and lineaments
Every fault, fracture and lineament on previously pub-
lished geological maps (Campos et al. 1998; Lara and
Moreno 2006; Bertin and Moreno in press) was collated
into a central database of 82 structures (Fig. 3d). Struc-
ture lengths vary between 300 m and 19 km and follow

three main orientations: N-S, NE-SW, and NW-SE. The
N-S-trending structures form part of the transpressional
dextral strike-slip LOFZ, the NW-SE-trending features
are sinistral-reverse strike-slips faults, and the NE-SW-
trending structures are normal faults with a strike-slip
component, i.e., transtensional faults.

Eruptive fissures
Eruptive fissures were mapped by classifying volcanic
vents with the morphometric criteria of Corazzato and
Tibaldi (2006). In our test case it was assumed that over-
lapping and superimposed cones are the surficial expres-
sion of eruptive fissures (Corazzato and Tibaldi 2006,
and references therein), which may display the same dir-
ection as their related feeder dikes (Becerril et al. 2013;
Tadini et al. 2014). Field mapping indicates that long-

Fig. 3 Volcano-structural data considered in the spatial probability analysis for the CLV. a Volcanic vents (white triangles indicate the location and
age of historical eruptions). b Thermal anomalies. c Earthquake epicentres. d Faults, fractures and lineaments. e Eruptive fissures. Each map is
drawn at 1:400,000 scale
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runout lava flows filling the Nilahue River valley were
fed by fissures (Bertin et al. 2018; Bertin and Moreno in
press). In addition, the 1979 eruption began as a fissure
(Moreno 1980). Collectively, 80 eruptive fissures are
identified, most of which trend E-W (Fig. 3e).
All volcano-structural datasets were processed in

ArcMap with a Universal Transverse Mercator (UTM)
projection. For point data (i.e., volcanic vents, thermal
anomalies, and earthquake epicentres), northing and
easting coordinates were extracted. For line data (i.e.,
structures and eruptive fissures), starting and ending co-
ordinates were noted. Finally, all these layers were then
exported to an Excel file in which each dataset was
assigned to a separate sheet (Additional file 1).

Method and results
MatHaz needs two Excel files (.xlsx extension) as inputs.
The initial file has to contain as many sheets as there are
volcano-structural datasets; with separate sheets re-
quired for volcanic vents, faults, fissures, and any other
spatial feature considered important (Additional file 1).
The second file has to be a Digital Elevation Model writ-
ten in ASCII (American Standard Code for Information
Interchange) format (Additional file 3).

Step 0: data files for R
The base step of MatHaz loads the volcano-structural
file and generates text files based on these data. For the
processing of point data, the code reads and rewrites
each sheet as a text file. For the processing of line data,
the program calculates both lengths and azimuths of
every line. Later on, it defines a parameter called ds,
which is the pixel size of the topographic matrix. It then
calculates a variable called steps by dividing every line’s
length by ds, and defines dx and dy based on every line’s
unit projection. All these calculations can be written as:

dl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1−xnð Þ2 þ y1−ynð Þ2

q
ð1Þ

θl ¼ atan
xn−x1
yn−y1

� �
ð2Þ

Δ ¼ dl

ds

� �
ð3Þ

dx ¼ sinθlj j ð4Þ

dy ¼ cosθlj j ð5Þ

where (x1, y1) and (xn, yn) are a line’s starting and ending
coordinates, respectively, dl and θl are a line’s length and
azimuth, respectively, ds is the pixel size, Δ is the steps
parameter (where [ ] is the nearest integer function), and
dx and dy are the line’s unit projection.

Once these parameters are obtained for every line, the
program performs the following iteration:

xmþ1 ¼ xm þ dsdx⇔xm < xn
xm−dsdx⇔xm > xn

�
⇔1≤m≤Δ ð6Þ

ymþ1 ¼
ym þ dsdy⇔ym < yn
ym−dsdy⇔ym > yn

�
⇔1≤m≤Δ ð7Þ

where (xm, ym) are the starting coordinates of the m-th
segment of a line.
The above procedure is performed in order to split

every line in a consistent way throughout the entire
dataset. That is, the longer the line is, the more
segments it is split into, and the more it will contribute
to the final kernel. Faults, fractures, lineaments and fis-
sures are managed in the same way, and they are
grouped according to their azimuths into N-S, NE-SW,
NW-SE, and E-W structures. Therefore, the ‘Step 0’ pro-
duces at most seven text files. The user can edit the code
to include any other spatial feature considered important
and/or to remove those that are absent or not relevant.
All these datasets are also saved as matrices for the first
step of the program.

Step 0.5: R
The performance of a kernel density estimation strongly
depends on the bandwidth selection (Duong 2005). In the
bi-dimensional case, the bandwidth matrix controls both
the degree and direction of smoothing (i.e., orientation
and rate of change of the spatial density with distance
from events), so its selection is not straightforward. A
widely used way for finding an optimal bandwidth matrix
is through the R package ‘ks’ (https://www.r-project.org;
Duong 2018, and references therein).
There are many methods to estimate an optimal

bandwidth matrix, which can be grouped into normal-
scale (ĤNS ), normal-mixture (ĤNM ), plug-in (ĤPI ), and
cross-validation (least-squares, ĤLSCV ; biased, ĤBCV ;
smoothed ĤSCV ) selectors (Duong 2018, and references
therein). An important issue is how fast they converge
to the AMISE-optimal bandwidth matrix, which depends
on both the sample size and the dimension of the matrix
(Duong 2005). As the sample size is fixed for every data-
set and its dimension is 2, the fastest bandwidths in
terms of convergence are: ĤPI with AMSE pilot (also
called ĤPI;AMSE ), ĤPI with SAMSE pilot (also called

ĤPI;SAMSE ), and ĤSCV (Duong 2005). To obtain the

ĤPI;AMSE bandwidth, for example, the routine in R is:

library ksð Þ

data < − read. table("text file location")
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bandwidth < −Hpi x ¼ data; pilot ¼ “amse”ð Þ
show (bandwidth)
This routine must be run for every text file. Here the

ĤPI;AMSE , ĤPI ;SAMSE , and ĤSCV bandwidths were calcu-
lated and their results noted into the MatHazR.m file.
The user is free to choose any bandwidth estimator, but
those above are recommended.

Step 1: spatial probability analysis
Once the MatHazR.m file is populated, the user can
conduct a spatial probability analysis of vent opening by
running MatHaz again. Firstly, the user is asked what
bandwidth estimator will be used. Then, for the vent
data, a retrospective time frame (Tr) is specified. What
the code does with this parameter is to give weights (wk)
to every vent k based on its estimated age (tk) as follows:

wk ¼ e−
tk
Tr ð8Þ

Tr is defined by default as the age of the oldest vent,
but the user may choose another constant and another
weighting function just by editing the code. Equation (8)
means that the weight assigned to historical events is
close to 1 (tk close to 0), and the older the vent, the
lower its weight and the less it will contribute to the
final kernel.
The spatial analysis is based on a Gaussian kernel,

which has infinite support, so the resulting PDF reaches
zero only at infinity. However, this function decreases
rapidly enough to be negligible at large distances, so it
can be cropped to a finite domain (Duong 2005; Germa
et al. 2013; Bebbington 2015; Connor et al. 2018). Thus,
the program increases the study area by ~ 900%, which
ensures that the resulting PDF will decrease towards
zero at its edges. Then, the program creates a m x n grid
for this expanded domain using the pixel size ds, and
every coordinate obtained at the end of the ‘Step 0’ is
adjusted to the pixel size.
MatHaz works with an expanded expression of Equa-

tion (34) (see Appendix 1 for derivation), rewritten to
show the value of the kernel function in any point of a
m x n grid for each k component of a bivariate sample
of size Sq (q being the dataset; e.g., volcanic vents, E-W
structures, etc.). That is:

cf qH rkð Þ ¼ dsð Þ2 Hj j−1
2

2π

Xn
j¼1

Xm
i¼1

e−
1
2 xi−xk ;y j−ykð ÞTH−1 xi−xk ;y j−ykð Þ

ð9Þ
Where xi and yj are the northern and western coordi-

nates of every segment of the study area, respectively.
The (ds)2 term is a normalizing factor added because
every coordinate was adjusted to a grid of pixel size ds,

so the integral of this function across the whole area is
quite close to one for every k.
Next, the program performs the following:

cf qH rð Þ ¼

1
Sq

XSq
k¼1

cf qH rkð Þwk⇔q ¼ Vents

1
Sq

XSq
k¼1

cf qH rkð Þ⇔q ¼ Any other dataset

8>>>><>>>>:
ð10Þ

Due to the assignment of different weights wk for each
k vent, the resulting PDF has to be normalized. The pro-
gram performs all these steps automatically and the user
chooses the graphic output.
Subsequently, the final PDF is defined as a linear com-

bination of the contribution of every dataset as follows
(e.g., Martí and Felpeto 2010; Cappello et al. 2012;
Becerril et al. 2013; Bartolini et al. 2014; Bevilacqua et al.
2015; Galindo et al. 2016):

cf H rð Þ ¼
XSt
q¼1

cf qH rð Þwq ð11Þ

where

XSt
q¼1

wq ¼ 1 ð12Þ

with St the total volcano-structural datasets grouped
during ‘Step 0’ and wq the weight assigned to the q-th
volcano-structural dataset.
In our CLV application, the weights wq were chosen by

assigning a relatively higher importance to volcanic
vents, N-S structures, and NW-SE structures (Table 1).
These features have been considered as the most rele-
vant for controlling the distribution of the volcanism in
the region (Cembrano and Lara 2009). The results of
equations (10) and (11) are shown as probability isocon-
tours in Figs. 4a-g and Fig. 4h, respectively.

Step 2: temporal probability analysis
Equation (11) is an estimate of the spatial density. That
is, it assumes that at least one eruptive event has already
taken place, and estimates its probability of occurrence
throughout the study area. However, if a spatio-temporal
assessment is envisioned, then the temporal probability
of the occurrence of a new volcanic event has to be
included. There are two ways for doing this:

λ r;Δtð Þ ¼ cf Hðr;ΔtÞ ð13Þ

or
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λ r;Δtð Þ ¼ cf H rð ÞρðΔtÞ ð14Þ

Where λ(:) is the space-time varying intensity function,
ρ(:) is a point process intensity function, and Δt is the
elapsed time to be forecasted. Equation (13) is used if
there is a temporal term explicit at some step during the
spatial analysis, and assumes that both spatial and tem-
poral components of the analysis are mutually
dependent. Equation (14), on the other hand, assumes
that both the spatial and temporal components are inde-
pendent, so they can be evaluated separately and then
multiplied by each other. The latter procedure is based
on the common assumption in volcanology that spatial
and temporal components can be considered separately
(e.g., Bebbington and Cronin 2011; Bebbington 2013;
Connor et al. 2013); this assumption will also be made

Table 1 Weights wq for each volcano-structural dataset, chosen
according to what features have been proposed as most relevant
for controlling the distribution of the volcanism in the region

Dataset wq

Volcanic vents 0.45

Thermal anomalies 0.04

Earthquake epicentres 0.06

N-S structures 0.20

NE-SW structures 0.14

NW-SE structures 0.03

E-W structures 0.08

Fig. 4 Spatial probability analysis for the CLV. PDFs obtained for each volcano-structural dataset after applying the kernel density estimation method
and shown as probability isocontours. a Volcanic vents, where an age-weighting procedure was used in order to give higher weights to newer vents
(white triangles indicate the location of historical eruptions). b Thermal anomalies. c Earthquake epicentres. d N-S structures. e NE-SW structures. f E-W
structures. g NW-SE structures. h Combined PDF showing the spatial probability of vent opening, obtained by weighting each volcano-structural layer
based on its relative importance in controlling the distribution of volcanism in the region. Each map is drawn at 1:500,000 scale
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here, so the focus will be on the different ways of calcu-
lating the ρ(:) function.
Given that ρ(:) is defined as a point process intensity

function, then a φ(:) function has to be defined in ad-
vance. Such a function can be expressed as a long-term
average recurrence rate, and is based on either the num-
ber of eruptions over a given observation period, or the
number of repose times over a long time interval (Ho et
al. 1991). In the second case, this is written:

φðΔtÞ ¼ N−1
t1−tN

ð15Þ

Where N is the total number of eruptions contained
between t1 and tN, inclusive, with t1 being the age of the
oldest known eruption and tN the age of the youngest
known eruption. Note that equation (15) does not de-
pend explicitly on Δt, meaning that the eruption rate is
considered to be constant throughout the history of the
volcanic field, so the volcano record is represented by a
simple Poisson process. This inference is questionable
since eruption frequencies can vary strongly over time
(e.g., Bebbington and Cronin 2011; Leonard et al. 2017;
Damaschke et al. 2018), but a Poisson model is a sens-
ible first-order approach in volcanic areas with long
eruptive histories and/or patchy eruptive records (e.g.,
Connor et al. 2013; El Difrawy et al. 2013; Runge et al.
2014; Bartolini et al. 2015; Gallant et al. 2018; Nieto-
Torres and Martin Del Pozzo 2019).
On the other hand, if reliable geochronological and/or

historical data are available, then more sophisticated es-
timators can be used, both stationary and non-stationary
(Bebbington 2012). In the second case, a useful non-
stationary model is a nonhomogeneous Poisson process
either known as a Weibull process, power intensity func-
tion or power law process (Smethurst et al. 2009; Cap-
pello et al. 2013; Connor et al. 2015), which is written:

φ teð Þ ¼ δ
θ

te
θ

� 	δ−1
ð16Þ

Where δ and θ are to-be-determined positive parame-
ters, and te the year of interest counted from the age of
the oldest known eruption (that is te = 0 at t1 and te = t1
at present). Both δ and θ parameters can be optimally
obtained by minimizing the following residual:

XN
i¼1

ϕ tið Þ−χ tið Þ½ �2 ð17Þ

where

ϕ tið Þ ¼
Z ti

0
φ tð Þdt ð18Þ

with N being the total number of eruptions, and ϕ(:) and

χ(:) the virtual and actual cumulative number of erup-
tions observed up to ti, respectively. The steps listed
here have been compiled in an Excel template
(Additional file 2).
Having obtained the function φ(:), the function ρ(:) is

modeled as a Poisson point process, which can be either
homogeneous (if equation (15) is used) or nonhomoge-
neous (if equation (16) is used), and can be generally
described as:

ρðne;ΔtÞ ¼ ½ΛðΔtÞ�ne
ne!

e−ΛðΔtÞ ð19Þ

where Λ(Δt) is the estimated number of eruptions for a
forecasting time interval Δt, that is:

ΛðΔtÞ ¼
Z t1−tNþΔt

t1−tN
φðtÞdt ð20Þ

Equation (19) calculates the probability of ne eruptions
at some location for a forecasting time interval Δt,
attaining its maximum at:

Δtmax ¼ Λ−1ðneÞ ð21Þ
Where Λ−1(:) is the function that reverses Λ(:). Inte-

gration limits in Equation (20) imply that the forecasting
time interval is measured from the age of the youngest
known eruption (tN).
If ne is set at zero (i.e., there are no eruptions for the

forecasting time interval), equation (19) becomes:

ρð0;ΔtÞ ¼ e−ΛðΔtÞ ð22Þ
In contrast, if this is not true, then:

ρðne≥1;ΔtÞ ¼ 1−e−ΛðΔtÞ ð23Þ
Equation (23) calculates the cumulative probability of

at least one eruption at some location for the forecasting
time interval Δt.
Regardless of which option is considered, MatHaz cal-

culates the spatio-temporal probability of n eruptions (or
at least one eruption) at r for a forecasting time interval
Δt (being r defined as any (x, y) pair of pixel size ds).
Likewise, as was done with its temporal counterpart,

an integration of cf HðrÞ in space is also an option,
although a common procedure in volcanology is to keep
the area as unitary (defined by the pixel size ds) and to
vary the forecasting time interval instead (e.g., Cappello
et al. 2013; Connor et al. 2013).
MatHaz allows the user to decide which methodology,

forecasting time interval, and number of eruptions will be
modeled. In our case study application, equations (16) and
(23) are used as an example, modeling the occurrence of
at least one eruption in the CLV for the next 1, 10, 100,
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and 1000 years (Figs. 5a to d, respectively). As it is noted,
the greater the time interval to be forecasted, the more
similar the resulting figure (Fig. 5d) is to that obtained at
the end of the spatial probability analysis (Fig. 4h). These
results can also be integrated for a specific area. In our test
case, the whole study area is considered, resulting in prob-
abilities of 24.7%, 29.8%, 62.5%, and 99.9% for the four
time periods forecasted. This means that the probability of
at least one eruption happening somewhere in the study
area during the next year is 24.7%, which increases to
29.8% for the next decade, and so on.

Step 3: probabilistic volcanic hazard analysis
Once the spatio-temporal assessment is completed, the
user can perform a probabilistic volcanic hazard analysis
by running the code once again. MatHaz works with
analytical, semi-empirical and empirical models pub-
lished in the literature, and each model is run as many
times as there are pixels in the study area (i.e., every
pixel is a potential vent). Despite this very convenient
assumption, the total number of pixels (i.e., m ∙ n) can
still be too large for manageable simulation times. Con-
sequently, at the beginning of this third step the pro-
gram asks the user what maximum cumulative
probability will be used, picking out only those pixels
with the highest spatio-temporal probabilities, so the
closer this number is to 1, the more pixels will be

selected. In the example of the CLV followed throughout
this work, cumulative probabilities of 0.9, 0.99, and
0.999 are reached at 5.5%, 9%, and 11.3% of the total
number of pixels, respectively (Fig. 6).
After this substep, the program reloads the topo-

graphic matrix of the area and asks the user what vol-
canic phenomena will be modeled. In this first version of
MatHaz, the following phenomena are considered:
PDCs, ballistic projectiles, lava flows, lahars, and tephra
fallout. Debris avalanches are absent due to the very low
probability of occurrence; nevertheless, they can be
included in an updated version of this tool. This is
discussed further in the next section.
PDCs (which include pyroclastic flows, pyroclastic

surges, blasts, and block-and-ash flows) are simulated
via a simple energy cone model (e.g., Malin and Sheridan
1982). Input parameters for this model are the collapse
height hc and the ratio between hv + hc and L, with hv
being the elevation of the chosen vent and L the run-out
length of the phenomena. The model generates a cone
with a slope mv (defined by the aforementioned ratio)
with its apex located hc meters over the vent. The inter-
section of this cone with the topography defines the area
that is prone to be affected by the phenomena (Malin
and Sheridan 1982). Both hc and L can range widely,
mainly depending on the type and volume of the current
(Newhall and Hoblitt 2002, and references therein).

Fig. 5 Spatio-temporal probability analysis for the CLV. PDFs obtained after applying a power law process approach to the spatial probability
map shown in Fig. 4h. The probabilities of occurrence of at least one eruption for the next: (a) 1 year, (b) 10 years, (c) 100 years, and (d) 1000
years are shown as probability isocontours, with 2019 being the present, and taking into consideration that CLV’s last eruption was in 1979. Each
map is drawn at 1:400,000 scale
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There are many compilations of these parameters world-
wide (e.g., Sheridan and Malin 1983; Hayashi and Self
1992; Freundt et al. 2000; Saucedo et al. 2005), so the
user can choose them based on analogues of what is ex-
pected in the study area. At CLV there is evidence of at
least 25 base surges, with run-outs of up to 6 km and
deposits evenly distributed around the vents. These are
mainly associated with phreatomagmatic eruptions,
although a few column-collapse scoria flow deposits
generated during strombolian eruptions are also present
(Bertin et al. 2018). Taking into account all these data,
collapse heights (hc) between 100 and 300 m, and slopes
(mv) between 0.1 and 0.3 were defined in our test case.
Ballistic projectiles are modeled based on an analytical

solution of the equations of movement of a dense pro-
jectile in the atmosphere (Bertin 2017). This model sim-
ulates a two-dimensional movement of an ellipsoidal
particle under no wind conditions assuming a constant
drag coefficient. Its input parameters are the projectile’s
density (ρS), semi-axes (d, e, f ), launch velocity (V0), ejec-
tion angle (θ0), and drag coefficient (CD), whose values
can range widely (Bertin 2017, and references therein).
The density of the atmosphere is assumed constant and
calculated at the vent. It is also assumed that there is no
preferred launch azimuth, so all plausible angles are con-
sidered. Where these results intersect with the topog-
raphy contours are drawn, with the area enclosed by this
contour defined as the zone prone to be affected by
ballistic projectiles with decreasing launch velocities. At
CLV, ballistic projectiles are recognized both in lapilli
fallout and pyroclastic surge deposits, at distances of up
to 2 km from the vents (Bertin et al. 2018). Inverse mod-
eling parameters found for these projectiles include: bulk
densities ρS 1500–2500 kgm− 3, semi-axes d, e, and f

between 0.2 and 1m, launch velocities V0 between 100
and 200 ms− 1, ejection angles between 30 and 60°, and
drag coefficients between 0.2 and 1.
Lava flows are modeled on the basis of their areal ex-

tent, slightly modified from the approach in Connor et
al. (2012). Such a model is ruled by simple algorithms,
whose input parameters are the total lava volume (VT)
and the lava unit thickness (hb) emitted for a pixel. The
unit blocks of lava are sequentially emitted from the
same pixel until their cumulative volume reaches VT

(Connor et al. 2012). After a block is created, the eleva-
tion of the source pixel and of its eight neighbors are
compared. If the lowest elevation pixel + hb is lower
than the elevation of the source pixel, then the block is
transferred to that pixel, otherwise the elevation of the
source pixel is increased by hb. This procedure is re-
peated while the block is transferred from one cell to an-
other, then, the former and latter topographies are
compared and the affected pixels depicted as the lava in-
undation zone. The model output strongly depends on
hb, so the smaller this parameter, the greater the run-out
lengths and the more intricate the flow, including mean-
ders around small topographic features. At CLV, up to
32 basaltic to basaltic andesite lava flows are identified
(Rodríguez 1999), most with a ā morphologies and
emitted during Hawaiian style eruptions (Bertin et al.
2018, and references therein). Their lengths vary from
14 to < 1 km and their thicknesses from 5 to 55 m, with
the longest and thickest flows related to the oldest activ-
ity of the field. During the Holocene, almost every lava
flow was < 3 km (Bertin et al. 2018). These data helped
to constrain the input parameters used for modeling,
resulting in volumes VT between 0.05 and 0.1 km3, and
block thicknesses hb between 1 and 10 m.

Fig. 6 Semi-log plot showing the cumulative probability curve versus the number of pixels considered. Inset shows that cumulative probabilities
of 0.9, 0.99, and 0.999 are reached at 5.5%, 9%, and 11.3% of the number of pixels with the highest probabilities
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Lahars (which include debris flows and hyperconcen-
trated streamflows) can be modeled following the same
inundation criteria for lava flows. In this case hb < 1m
should be used, and volumes VT < 0.2 km3 are recom-
mended based on the literature (e.g., Vallance and Scott
1997; Gudmundsson 2015). At CLV, lahars are generated
by rainfall remobilisation of tephra falls, with the largest
known generated in 1907. The products of this eruption
dammed the Nilahue River, generating a lake upstream
that collapsed several months later, flooding areas up to
30 km away (Bertin et al. 2018, and references therein).
However, the lahar deposit record during the history of
the CLV is poorly known and generally not linked to
vents, thus lahar events were not modeled in our test
application.
Tephra fallout was empirically modeled assuming that

the deposit thins exponentially away from source and
that the isopachs are either circular or elliptical (Pyle
1989). This decay law becomes clear if the natural
logarithm of the thickness is plotted against the square
root of each isopach area, so a straight line can be fitted
using a least squares approach (Pyle 1989; Fierstein and
Nathenson 1992). Such a line has two parameters: its
slope −k and its y-intercept ln(T0), where T0 is the
extrapolated maximum deposit thickness, so the deposit
thickness can be estimated as (Pyle 1989):

T ¼ T 0e
−k

ffiffiffi
A

p
ð24Þ

If equation (24) is integrated with respect to the area
A, the total tephra volume can be obtained (Fierstein
and Nathenson 1992):

V ¼ 2T 0

k2
ð25Þ

Equation (25) has been commonly used as a first-order
approach to estimate the volume of several explosive
eruptions, but it requires a minimum number of iso-
pachs covering a widespread area to confidently define
−k and T0. At CLV, up to 56 fallout deposits are identi-
fied, but volumes are only well-constrained for historical
events, which vary between 0.009 and 0.37 km3 (Bertin
et al. 2018, and references therein). Based on these data,
several thousands of (−k,T0) pairs were randomly gener-
ated by a Monte Carlo simulation and selected only if
the calculated volume was between 0.0001 and 0.5 km3.
Every chosen pair was then used in the following equa-
tion, which relates elliptical isopachs to distance, with
the source at one of the foci of the ellipse (Nathenson
2017; see Appendix 2 for derivation):

Tij ¼ T rij;ϕij

� 	
¼ T 0e

−krij 1−ε cos ϕijþφ0ð Þ½ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π

1−ε2ð Þ
3


2

r
ð26Þ

Where ε is the isopach eccentricity, rij is the distance
from the source (x0, y0) to any (xi, yj), and ϕij is the angle
between these two points measured from the ellipse’s
major axis. The term φ0 allows a rotated ellipse, i.e., its
major axis does not coincide with the E-W axis of the
study area, and can be considered as a proxy for wind
direction (e.g., Bonadonna et al. 2005b; Connor and
Connor 2006). The eccentricity ε elongates the deposit
downwind and compresses it upwind, and is partly re-
lated to how the wind affected the dispersal pattern (e.g.,
Burden et al. 2013; Mastin et al. 2014). The parameters ε
and φ0 do not have any influence on the calculated vol-
ume, but they do affect both the shape and the orienta-
tion of the isopachs. In our test case, eccentricities ε
between 0 and 1, and rotation angles φ0 between 200
and 340° (measured clockwise from north) were defined.
The latter parameter reflects a predominantly westerly
wind in the region (Bertin et al. 2018).
In our CLV case study, each model was run only for

those source pixels whose probability contribute the
most to the 99.9% of the spatio-temporal cumulative
probability (that is, 11.3% of the total number of pixels;
Fig. 6). The parameters for each model were randomly
defined following a Latin-hypercube sampling approach
(e.g., McKay 1992; Bertin 2017), with up to n′ intervals,
with n′ being the number of pixels considered in this
analysis (i.e., n ′ ≤m ∙ n). For each model and for each
pixel, the resulting area was assigned the spatio-
temporal probability of its source pixel.

Step 3.5: integration
The areas affected by each volcanic phenomenon are
summed in this way:

ph ¼
Xn0
p¼1

php ð27Þ

where php is the spatio-temporal probability grid (of size
m ∙ n) related to the p-th source pixel for the h-th
volcanic phenomenon. The final sum ph is normalized,
so its integral throughout the area is one.
These probability grids can be quantitatively combined

into a single grid by assigning weighting factors wh to
every volcanic phenomenon as follows:

p ¼
Xh0
h¼1

phwh ð28Þ

where
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Xh0
h¼1

wh ¼ 1 ð29Þ

with h′ being the total number of phenomena modeled
during ‘Step 3’ (in this case four) and wh the weight
assigned to the h-th volcanic hazard. The user may
specify a value of every weight wh. In our CLV case
study, the weighting values reflected the relative fre-
quency of each volcanic phenomenon according to the
geological knowledge in the zone (Table 2).
Results of Equation (27) are shown as probability iso-

contours for the four volcanic phenomena modeled:
PDCs, ballistic projectiles, lava flows, and tephra fallout
(Figs. 7a to d, respectively), while results of Equation
(28) are shown as probability isocontours of an inte-
grated quantitative volcanic hazard map (Fig. 7e).
Finally, if the results are sorted from largest to smal-

lest, they can be binned as percentiles. For our case
study, three boundaries were chosen to represent high
(20%), moderate (40%), and low hazard (80%). This zon-
ing is shown as an integrated qualitative volcanic hazard
map following a red-yellow sequential colour scheme
(Fig. 8), after having been passed through the Color
Brewer tool (Brewer et al. 2013).

Discussion and conclusions
Limitations of the code
A significant contribution of MatHaz is its ability to
combine several volcanic hazards independently mod-
eled for every source pixel. This procedure required
some assumptions in order to achieve manageable simu-
lation times (always a consideration for a single com-
puter simulation). Namely, empirical, semi-empirical,
and analytical models are prioritized over physics-based
numerical models. That is, unlike other hazard codes,
MatHaz is not designed to model the physics of volcanic
eruptions and their products, nor to model the details of
specific eruptive scenarios. The code is not concerned
with the rates of these processes other than the rate of
vent formation. However, if process rates need to be
tackled, a user could run MatHaz to obtain a spatial or a
spatio-temporal probability map and then run more so-
phisticated numerical models on other platforms based
on these results.

Even the simplest models considered in MatHaz have
their own assumptions. Tephra fallout modeling, for
example, was performed by drawing oriented elliptical iso-
pachs assuming a deposit that thins exponentially away
from source. The parameters that control this exponential
decay (i.e., −k and T0) were obtained assuming that the
isopach data only define a single slope on a ln(T) versusffiffiffiffi
A

p
plot. This is a very simple approach and has been

proven to not necessarily be true. Indeed, research on
several well-documented eruptions has shown different
data behavior, e.g., multi-segment exponential curves,
power-law curves, and Weibull functions, which in turn
have their own parameters (Bonadonna and Costa 2012,
and references therein). A potential user can, however,
adapt the code to include any of these functions and rou-
tines to obtain their optimized parameters.
Alternative semi-empirical models, such as the tephra

attenuation model (González-Mellado and De La Cruz-
Reyna 2010; Kawabata et al. 2013), can also be incorpo-
rated into the code. Numerical modeling of tephra fallout,
on the other hand, has already been accomplished in some
hazard assessments of distributed volcanic fields, but re-
sults have typically been either depicted by isopachs super-
imposed on the integrated volcanic hazard map (e.g.,
Alcorn et al. 2013; Bartolini et al. 2014; Becerril et al.
2017), or integrated in some fashion with the other haz-
ards (e.g., Becerril et al. 2014; Bartolini et al. 2015). How-
ever, such integration is challenging if the other hazards
represent cumulative probabilities of inundation yet the
tephra hazard is based on a single eruptive scenario mod-
eled with specific atmospheric conditions. Sophisticated
numerical tephra modeling tools are available (e.g., Hurst
and Turner 1999; Bonadonna et al. 2005a; Folch et al.
2009; Schwaiger et al. 2012) and are continuously being
adapted to perform probabilistic analyses, varying either
the atmospheric parameters (Amigo et al. 2012; Sandri et
al. 2014) or the eruptive scenarios (Biass et al. 2016), and
tested to obtain better-constrained eruptive parameters
via inverse modeling (White et al. 2017). Running any of
these models on their respective platforms for those vents
with the highest spatio-temporal probabilities might be a
sensible option.
Other volcanic processes included in MatHaz, such as

lahars, are modeled based on a simple ‘flow-routing’
code. That is, the lahar will always follow the thalweg of
the valley and will never overbank. There are, however,
more sophisticated tools available to model the dynamics
of the flow taking into account mass and momentum,
for example, the Titan2D model (Patra et al. 2005),
which has proven to be useful to simulate block-and-ash
flows as well (Charbonnier and Gertisser 2009).
Debris avalanches (e.g., sector collapses) have not been

considered in this first version of MatHaz due to their
very low probability of occurrence in volcanic fields,

Table 2 Weights wh for each volcanic hazard, chosen according
to the relative frequency of each volcanic phenomenon based
on its relative abundance in the CLV eruptive record

Volcanic hazard wh

PDCs 0.20

Ballistic projectiles 0.30

Lava flows 0.10

Tephra fallout 0.40
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although a model can be incorporated in any subsequent
version of the program. A routine for debris avalanche
modeling could be developed by simply editing the
energy cone tool. Despite its simplicity, the energy cone
tool is a good estimator of the extent of debris ava-
lanches worldwide, where an inverse relationship
between the slope of the cone (mv) and the volume of
the deposit has been proposed (Ui 1983; Schuster and
Crandell 1984; Siebert 1984; Ui et al. 2000). If the user
wishes to model this phenomenon, mv values between
0.04 and 0.18 are recommended (Hayashi and Self 1992;
Siebert 1996).
For the modeling methodology, it was assumed that

every volcanic phenomenon had its source in a single
squared pixel of size ds. This is an oversimplification,

especially for lava flows, since they quite often start
erupting from a fissure (e.g., several pixels), which may
or may not evolve into a single vent (Valentine and
Gregg 2008). In the CLV, there are examples of these
fissure eruptions in both the historical and prehistorical
record. In MatHaz, simulation of fissure eruptions adds a
complexity to the model similar to that which arises when
simulating rain-triggered lahars, since many assumptions
about the additional source pixels have to be made and its
implementation is not straightforward, although for rain-
triggered lahars some attempts have been made (e.g.,
Jones et al. 2017; Mead and Magill 2017).
MatHaz is programmed to run regardless of the input

files or parameters given by a potential user. In order to
optimize performance of future applications, we

Fig. 7 Probabilistic volcanic hazard maps for the CLV. PDFs obtained after empirical, semi-empirical or analytical modeling of the most relevant
volcanic phenomena for this volcanic field based on the spatio-temporal probability map shown in Fig. 5d. The spatio-temporal probabilities of:
(a) PDCs, (b) Ballistic projectiles, (c) Lava flows, and (d) Tephra fallout are shown as probability isocontours. (e) Integrated quantitative volcanic
hazard map showing the relative likelihood of being affected by volcanic phenomena including PDCs, ballistic projectiles, lava flows and tephra
fallout, each weighted differently according to its relative abundance in the CLV eruptive record. Maps are drawn at 1:500,000 scale
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recommend that the user maintain the format and struc-
ture of each of the input files used in our test case appli-
cation (see Additional files 1 and 3). The user can,
however, edit the code to enable it to read other file for-
mats and structures if required. Likewise, MatHaz is not
programmed to give a warning if the input parameters
are unrealistic. However, some guidelines and sensible
ranges of parameters are given as recommendations in
the volcanic hazards’ modeling section as the user goes
through this task.

Limitations of the application
In our CLV application it was assumed that every volcanic
vent represents a single event. This is not necessarily true
for distributed volcanism (e.g., Runge et al. 2014; Bevilac-
qua et al. 2017; Connor et al. 2018; Gallant et al. 2018), so
statistical analyses testing the independence of every vol-
canic vent in the study area would be desirable. Following
this idea, vents classified either as overlapping or superim-
posed (e.g., Corazzato and Tibaldi 2006) might be
assumed to be the surficial expression of magma-feeding
fractures (e.g., Becerril et al. 2013; Tadini et al. 2014), and
then be related to a single magmatic event (e.g., Nieto-
Torres and Martin Del Pozzo 2019). However, considering
events rather than vents would mean that the spatial
probability analysis will estimate the spatial density of
future volcanic events, each of which might produce more

than one volcanic vent (Connor et al. 2018). If an analysis
of this type is envisioned, then studies focused on detailed
stratigraphic correlations including radiometric dating
should be carried out in the zone of interest to attempt to
attribute vents to events, although this may be difficult to
accomplish (Connor et al. 2018; Gallant et al. 2018). On
the other hand if, as was done in our case study, a spatial
probability of vent opening is visualized, then each vent
has to be considered as a single magmatic event. A restric-
tion of this approach is that, because the model only
forecasts the location of the next volcanic vent, the
location of any forthcoming vent will be influenced by the
location of the previous vents (Connor et al. 2018). This
means that the use of equations (16) and (23) for more
than one eruption during the spatio-temporal assessment
is only partly valid. Nevertheless, that would be true for
distributed fields with just a few vents, so the larger the
number of vents, the less any subsequent vent will affect
the spatial density estimation. In order to evaluate how
any future vent affects the spatial probability map, a
sensitivity analysis simulating different vent locations
should be conducted.
Additionally, for the temporal assessment a power law

process was used for the CLV. As a detailed temporal
eruption record does not exist for this volcanic field, this
approach was made possible by estimating the absolute
age (with no age uncertainties) of every vent based on its

Fig. 8 Integrated qualitative volcanic hazard map for the CLV based on the results obtained in Fig. 7e. The relative likelihood of being affected by
lava flows, ballistic projectiles, tephra fallout and PDCs is shown by three user-defined probability isocontours: 20%, 40%, and 80%, interpreted in
our case-study as high, moderate and low hazard, respectively. Map drawn at 1:150,000 scale. Contour lines depicted every 50m
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morphology and on the 14C ages available. This proced-
ure was performed as an ideal case for comparing the
results with those obtained assuming a long-term aver-
age recurrence rate (see next subsection), which only
needs the total number of eruptions and the ages of the
oldest and youngest eruptions. However, more sophisti-
cated estimations can be conducted by including age un-
certainties, and running some Monte Carlo simulations
to obtain better recurrence rates and confidence inter-
vals (e.g., Bebbington 2013; Connor et al. 2013), or by
building a very complete eruption age dataset (e.g.,
Damaschke et al. 2018).
The volcanic record at CLV shows the occurrence of

PDCs, ballistic projectiles, lava flows and tephra fallout.
Lahar deposits have also been identified in the CVL, but
they are likely to have been generated by remobilization
of unconsolidated pyroclastic material during intense
rainfall, so lahars triggered by eruptive activity were not
modeled in our test application. However, the simulation
of lahars generated by a volcanic eruption is an option
in MatHaz.
MatHaz has been developed to follow a sequential

methodology, meaning that each step is based on the
results obtained in previous steps. In our case study, the
vent location probability (Fig. 4h) is by far the main
factor governing all hazards (Figs. 7 and 8), so if the vent
location model is wrong, then the entire analysis will be
wrong. To address this issue, some alternative models,
bandwidths, and weights should be tested for compari-
son and to manage uncertainties. Some examples of this
are given below.

Model achievements and sensitivity analyses
The model presented here performs an integrated
(quantitative and/or qualitative) spatio-temporal volcanic
hazard assessment for distributed volcanic fields, which
presents some improvements over existing methods.
One breakthrough is related to the consideration of
different options for calculating bandwidths during the
spatial hazard assessment. These bandwidths have com-
monly been considered as scalars in the literature, with
studies that have worked with matrices being quite
scarce (e.g., Kiyosugi et al. 2010; Bebbington and Cronin
2011; Connor et al. 2012, 2013; El Difrawy et al. 2013;
Bebbington 2015; Galindo et al. 2016; Bevilacqua et al.
2017; Connor et al. 2018). Throughout the CLV example
followed in this manuscript, the ĤPI;AMSE selector was

considered. Also considered were the selectors ĤPI;SAMSE

and ĤSCV , and the area enclosed by the resulting isocon-
tours 10− 20, 10− 10, and 10− 5 of their respective final
spatial probability maps (i.e., after applying Equation
(11)) noted for comparison (Table 3). The highest dis-
crepancies (up to 38.6%) were found when comparing

the area of the isocontour 10− 20 of the ĤPI;AMSE and

ĤSCV selectors, with this being lower (up to 5.1%) at
higher probability isocontours. These results suggests
that, although the selection of bandwidths follows an
automatic and data-driven methodology, different band-
widths may have a significant influence on spatial prob-
abilities, so a sensitivity analysis should always be
conducted since the spatial probability map generated in
this step forms the basis of both the spatio-temporal and
the probabilistic hazard analyses. This sensitivity analysis
can also be extended to evaluate how kernels with adap-
tive bandwidths perform, such as the mth nearest neigh-
bour estimate (Connor and Hill 1995; Bebbington 2013),
those based on the Botev’s algorithm (Botev et al. 2010;
Galindo et al. 2016), or kernels with other bandwidths,
such as the Kullback-Leibler score (Vere-Jones 1992;
Bebbington 2015).
Another highlight compared to previous approaches is

that the weight assigned to each vent is left up to the
user. To test the effect of this, our weighted approach
(i.e., younger vents having a greater influence on fore-
casts) was compared to an unweighted case. Likewise,
the area enclosed by the isocontours 10− 20, 10− 10, and
10− 5 of their respective spatial probability maps (i.e.,
after applying Equation (10)) was noted for comparison
(Table 4). The greatest differences (up to 30%) were
found at the higher probability isocontour, suggesting
that weighting strongly influences spatial probability
estimates. In our test case, an exponentially decreasing
function was assumed following Cappello et al. (2013),
however the user can choose any other function that
best represents the age data and then make compari-
sons, e.g., if there is a distinct spatial trend in the data
(e.g., Connor and Hill 1995; Cronin et al. 2001; Ho 2010;
Gallant et al. 2018), the weighting could be set up to
reflect this.
For the temporal assessment, in order to compare the

power law approach with long-term recurrence rates,
four different time intervals (1, 10, 100, and 1000 years)
were considered and their temporal probabilities (after
applying equation (23)) calculated for each method
(Table 5). These results suggest differences of up to 43%
for the shortest forecasting time interval, which are

Table 3 Sensitivity analysis. Comparison of the area enclosed by
three probability isocontours of the combined PDF (shown in
Fig. 4h) for three different bandwidth estimators

Probability
isocontour

Area (km2)

ĤPI;AMSE ĤPI;SAMSE ĤSCV

10−20 1866 1875 2587

10−10 976 991 1184

10−5 303 311 318
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smaller for larger forecasting horizons. In consequence,
special care should be taken when conducting the tem-
poral probability analysis. Ideally, several approaches and
age datasets, including uncertainties, should be tested
and compared to each other.
For the hazard modeling assessment, a Latin-hypercube

sampling approach was used to assign different modeling
parameters to every source pixel for each volcanic
phenomenon. In order to validate the code against
outputs of the same models for the same inputs (after
applying equation (27)), up to 10 simulations were run
and their results compared. Interestingly, very small differ-
ences (between 0.3 and 1%) were found when comparing
the areas enclosed by the probability isocontours 10− 8,
10− 6, and 10− 4, suggesting that very few simulations are
representative for each hazard. This finding may be due to
the sampling technique, which aims at spreading the mod-
eling parameters more evenly than a pure random (e.g.,
Monte Carlo) approach.
The pixel size influence on the simulation times was

also tested. In our test case, a pixel dimension of 100 m
was used, which is ~ 0.1% of the longest side of the ex-
panded study area, providing ~ 5·105 pixels. A pixel size
of 1000m (~ 5·103 pixels) reduced the simulation times
by 2.5 orders of magnitude, but produced coarse prob-
ability isocontours. A pixel size of 10 m (~ 5·107 pixels),
on the other hand, was far more computationally inten-
sive, but with little reward, in that the shapes of each
probability isocontour were quite similar to the 100 m
pixel case. The pixel size/computational efficiency trade-

off would need to be evaluated for each volcanic field
studied, depending on its overall dimensions.
Finally, another innovative step is the aggregate prob-

ability for each volcanic phenomenon. In our CLV
example, phenomena were weighted accordingly to their
frequency of occurrence in the eruptive record. How-
ever, for volcanic fields with an incomplete eruptive rec-
ord, the user could alternatively weight phenomena
based on a simplified view of their relative hazard (PDCs
might be given a higher weighting than ashfall, for
example). If this approach is taken, the restriction shown
in Equation (29) would have to be discarded, and the
sum of weights would be any integer, and interpreted as
a hazard index.

Final considerations
MatHaz has been developed as a tool to help deal with
the real and practical complications of assessing hazard
for distributed volcanism, so its intended users are re-
searchers who need to make hazard maps for volcanic
fields. This tool can also be used to provide a general
approach for hazards in large volcanic areas and/or to
rapidly generate several scenarios for volcanic fields
showing signs of unrest.
Its systematic, sequential, and automated data-driven

methodology can be tuned to perform optimally for any
volcanic area, regardless of its extent, type, and amount
of volcano-structural data. However, in order to achieve
this task, and unlike other hazard simulation tools,
MatHaz has not been developed to model the physics of
volcanic eruptions and their products, or to model the
details of specific eruptive scenarios.
MatHaz was created in Matlab R2017b (version 9.3)

and has been successfully tested in Matlab R2015a
(version 8.5). It does not require any additional
toolboxes, however the Statistics and machine learning
toolbox is required for ‘Step 3’ of the program if a Latin-
hypercube sampling approach is envisioned.
MatHaz can be found in Additional file 4. The code is

open source, so it can be edited and replicated. This code
and further updates are planned to be hosted on the
Github hosting service (https://github.com/geoscience-
community-codes).

Disclaimer
It should be emphasized that a volcanic hazard map of
the Carrán–Los Venados Volcanic Field already exists,
produced by Bertin et al. (2018) and issued by SERNA-
GEOMIN, which is the only agency in Chile that has the
mandate to develop official hazard maps. The official
map developed by Bertin et al. (2018) is therefore the
map that should be used for any volcanic planning and
mitigation activities. The probabilistic spatio-temporal
volcanic hazard assessment conducted here, as well as

Table 4 Sensitivity analysis. Comparison of the area enclosed by
three probability isocontours of the spatial density for volcanic
vents (shown in Fig. 4a) for a weighted (wk = f(t)) and a non-
weighted (wk = 1) case

Probability
isocontour

Area (km2)

wk = f(t) wk = 1

10−20 682 688

10−10 373 381

10−5 110 143

Table 5 Sensitivity analysis. Comparison of the spatio-temporal
cumulative probabilities for the whole study area (shown in Fig.
5) for four different time periods, considering both power law
and long-term average recurrence rate approaches

Time
period

Spatio-temporal cumulative probabilities

Power law process Long-term average recurrence rate

1 0.2421 0.1381

10 0.2929 0.1695

100 0.6221 0.4055

1000 0.9994 0.9790

Bertin et al. Journal of Applied Volcanology             (2019) 8:4 Page 19 of 25

https://github.com/geoscience-community-codes
https://github.com/geoscience-community-codes


every hazard map produced as a result, although based
on sound data merely constitute an intellectual exercise
performed to illustrate the implementation of the
MatHaz tool. Therefore, the qualitative volcanic hazard
map obtained (Fig. 8) is not comparable in any regular
way with the official volcanic hazard map issued by
SERNAGEOMIN.

Appendix 1
Kernel density estimation – Theoretical framework
Kernel density estimation is a non-parametric method
for estimating the PDF of a distributed sample in which
the parameters that rule it are unspecified. In the bivari-
ate case, that is:

f̂ rð Þ ¼ 1
S

XS
k¼1

K r−rkð Þ ð30Þ

Where K(:) is the kernel, r = (x, y)T, and rk = (xk, yk)
T,

being r the coordinates of every point in the two-
dimensional space and rk the coordinates of the k-th
component of a bivariate sample of size S.
This kernel has to satisfy the following properties:Z

ℝ2

K uð Þdu ¼ 1 ð31Þ

which ensures that a PDF will be obtained, and

K uð Þ ¼ K −uð Þ ∀u ð32Þ
which ensures that the mean of the distribution will be
equal to that of the sample.
If K(u) is a kernel, that means that λK(λu) for some

λ > 0 is a kernel as well. This property allows an appro-
priate scale to be chosen. To do this, it has commonly
been assumed that λ ¼ 1

h, where h is a smoothing param-
eter, also called bandwidth, which determines how
smooth the estimated function is (i.e., it controls the size
of the neighborhood around every rk). In the one-
dimensional case, the bandwidth is a scalar (h), but in
the two-dimensional case it can be either a scalar (h) or
a matrix (H). If the bandwidth is a matrix, the scaled
bivariate kernel is:

KH r−rkð Þ ¼ Hj j−1
2K H−1

2 r−rkð Þ
� 	

ð33Þ

Although there are various choices among kernels, the
most often used in volcanology is the Gaussian kernel
(e.g., Connor and Hill 1995; Conway et al. 1998; Connor
et al. 2000), mainly due to its small loss of efficiency and
its mathematical properties, although its support extends
to infinity. If a Gaussian kernel is considered, equation
(30) becomes:

cf H rð Þ ¼ Hj j−1
2

2πS

XS
k¼1

e−
1
2b

T b ð34Þ

where b ¼ H−1
2ðr−rkÞ.

The performance of a kernel density estimator de-
pends more strongly on the bandwidth selection than on
the kernel function chosen (Duong 2005). In the Gauss-
ian case, a small bandwidth leads to very spiky estimates,
while a large one an overly smoothed estimate (Connor
et al. 2009). If the bandwidth is a matrix, its notation is:

H ¼ h11 h12
h12 h22

� �
ð35Þ

This matrix has to be positive-definite, which amongst
many other properties means that is invertible, has a
square root, and h11 > 0, h22 > 0, |h12| < h11h22. Notation
in equation (35) implies two smoothing patterns of the
kernel function, not necessarily aligned along the
coordinate axes of the grid. That is, if a scalar bandwidth
(h) is used, its shape is circular, whereas if it is a matrix
(H), its shape is elliptical and smoothed by the major
and minor axes lengths. To obtain those parameters,
both bandwidth’s eigenvalues and eigenvectors have to
be calculated.
There are many methods to estimate an optimal band-

width matrix (Duong 2018, and references therein). No
one method has emerged as the best, mainly due to limi-
tations on measuring their relative rate of convergence
to the AMISE (asymptotic mean integrated squared
error) optimal bandwidth matrix (Duong 2005).
However, selectors based on either the AMSE (asymp-
totic mean squared error) or the SAMSE (sum of
AMSE) procedures are recommended because of their
simplicity (i.e., statistical parsimony) and because they
produce finite pilot bandwidths, displaying faster rates of
convergence (Duong 2005). To obtain an optimal band-
width, the freely available statistical program R can be
used (https://www.r-project.org/).

Appendix 2
Derivation of Equation (26)
According to Pyle (1989), tephra thickness can be empir-
ically modeled as an exponential function of either the
square root of the isopach area A or the distance to the
source r, that is:

T ¼ T 0e
−k

ffiffiffi
A

p
¼ T 0e

−qr ð35Þ
Where −k and −q are the slopes on plots of ln(T) ver-

sus
ffiffiffiffi
A

p
and r, respectively, while T0 is the extrapolated

maximum deposit thickness. Assuming that all the iso-
pachs are elliptical in shape, both r and A can be
expressed as follows:
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r ϕð Þ ¼ r0 1−εð Þ
1−ε cosϕ

ð36Þ

A ¼ 1−εð Þ2
Z π

0

r02

1−ε cosϕð Þ2 dϕ ¼ πr02 1−εð Þ2

1−ε2ð Þ3


2

ð37Þ

Where r0 and ε are the major axis and the eccentricity
of the ellipse, with the source at one of the foci of the el-
lipse, whereas ϕ is the angular coordinate measured
from the horizontal axis of the study area.
Equating exponents in equation (35), then:

k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πr02 1−εð Þ2

1−ε2ð Þ3


2

vuut ¼ q
r0 1−εð Þ
1−ε cosϕ

ð38Þ

Simplifying and solving for q:

q ¼ k 1−ε cosϕð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

π

1−ε2ð Þ3


2

s
ð39Þ

ϕ and r can be written as:

ϕ ¼ ϕij ¼ tan−1
y j−y0
xi−x0

� �
ð40Þ

r ¼ rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi−x0ð Þ2 þ y j−y0

� 	2
r

ð41Þ

Where xi and yj are the respective i-th western and j-
th northern coordinates of the study area, and x0 and y0
are the western and northern coordinates of the source.
If the ellipse is rotated (i.e., its major axis does not co-

incide with the horizontal axis of the study area), an an-
gular term φ0 can be added, so equation (40) becomes:

ϕij ¼ φ0 þ tan−1
y j−yo
xi−x0

� �
ð42Þ

Equation (26) can be obtained by inserting equation
(42) in equation (39), and by replacing equations (39)
and (41) in equation (35).

Notation
A area enclosed within a given isopach.
CD drag coefficient.
d major radius of the particle.
dl length of a line.
ds squared pixel size of the

topographic matrix.
dx E-W unit projection of a line.
dy N-S unit projection of a line.
e intermediate radius of the particle.
f minor radius of the particle.

f̂ ð:Þ; cf Hð:Þ PDFs of a distributed sample.cf qHð:Þ PDF of the q-th bivariate sample.

h scalar bandwidth.
h′ total number of hazards modeled.
hb unit thickness of every block.
hc collapse height.
hij components of a bandwidth matrix H.
hv elevation of the vent
H matrix bandwidth
ĤNS normal-scale selector
ĤNM normal-mixture selector
ĤPI plug-in selector
ĤPI;AMSE plug-in selector with AMSE pilot

ĤPI;SAMSE plug-in selector with SAMSE pilot

ĤLSCV least-squares cross-validation selector
ĤBCV biased cross-validation selector
ĤSCV smoothed cross-validation selector

−k slope on a ln(T) versus
ffiffiffiffi
A

p
plot

K(:) (kernel)
KH(:) scaled bivariate kernel
L run-out length of the phenomena
m number of pixels in the E-W direction of the

expanded study area
mv slope of the energy cone
n number of pixels in the N-S direction of the

expanded study area

n′ number of pixels considered in the analysis
ne number of eruptions to be forecasted

N total number of eruptions contained between t1 and tN
p integrated spatio-temporal probability matrix
ph integrated spatio-temporal probability matrix for

the h-th hazard
php spatio-temporal probability matrix related to the p-

th pixel for the h-th hazard
q number of bivariate samples
−q slope on a ln(T) versus r plot
r = rij distance from the source (x0, y0) to any (xi, yj)
r = (x, y)T two-dimensional Cartesian coordinate system
r0 ellipse’s major axis with the source at one of its foci
rk = (xk, yk)

T coordinates of the k-th component of a
bivariate sample
S size of a bivariate sample
Sq size of the q-th bivariate sample
St total volcano-structural datasets
Δt forecasting time interval
t1 age of the oldest known eruption
te year of interest counted from the age of the oldest

known eruption
ti age of the i-th eruption

tk age of the k-th volcanic vent
Δtmax time when the temporal probability attains its

maximum
tN age of the youngest known eruption
T = Tij tephra thickness at (xi, yj)
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T0 extrapolated maximum tephra thickness
Tr retrospective time frame
V tephra fall volume
V0 launch velocity of the particle
VT total volume of the phenomena
xi western coordinate of the i-th E-W segment of the

study area
yj northern coordinate of the j-th N-S segment of the

study area
wh weight assigned to the h-th volcanic hazard
wk weight assigned to the k-th volcanic vent
wq weight assigned to the q-th volcano-structural dataset
(x0, y0) coordinates of the tephra source
(x1, y1) starting coordinates of a line
(xm, ym) starting coordinates of the m-th segment of

a line
(xn, yn) ending coordinates of a line
δ positive parameter that controls the power law process
ε isopach eccentricity
θ positive parameter that controls the power law process
θ0 ejection angle of the particle with the horizontal plane
θl azimuth of a line
λ(:) space-time varying intensity function
ρ(:) point process intensity function
ρs block density
φ(:) recurrence rate
φ0 angle between the ellipse’s major axis and the E-W

axis of the study area
χ(:) actual cumulative number of eruptions
Δ steps parameter
Λ(:) estimated number of eruptions
ϕ = ϕij angle between (x0, y0) and (xi, yj) measured from

the ellipse’s major axis
Φ(:) virtual cumulative number of eruptions
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structural datasets for the CLV. (XLSX 36 kb)
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