Critical infrastructure organisations that have experienced adverse impacts during ashfall events commonly report low levels of prior awareness of ashfall hazards and impacts (Blong [1984]; Paton et al. [1998]; Ronan et al. [2000]; Wilson et al. [2012b]). Whilst many organisations recognise the value of planning and preparedness for volcanic hazards, the necessary investment can be difficult to justify in the context of a variety of other hazards and business pressures. Feedback from AELG members suggested that lengthy reports summarising known impacts, mitigation options/recommendations and interdependency issues were useful, but only during infrequent detailed planning exercises. Authoritative but concise reference materials preferred as a means to inform planning and be readily available during a crisis, supplemented by additional information from science providers as needed. After some experimentation and consultation, posters were judged to be the optimal method for condensing key impact and mitigation information into a concise, palatable and visible form. The first series of posters was commissioned and completed during the period 2007–2010 for five infrastructure sectors: airports, road networks, drinking-water supplies, power-systems (networks), and wastewater collection and treatment systems (Figures 1, 2, 3, 4, 5). These sectors were selected by AELG and VISG members as most likely to be impacted. This edition of the posters were advertised widely in outreach activities, used during emergency management exercises and ultimately became a recognised information source in New Zealand (Bay of Plenty Engineering Lifelines Coordinator pers. comm. 2012).
During subsequent review of VISG resources and risk communication strategy, it became apparent that the content of the first series of posters was becoming outdated; for example, global initiatives in the aviation sector (ICAO, [2007]) needed to be incorporated into advice. Thus it was decided in 2012 that a) the current poster suite should be updated with the latest research and accounting for local and global developments, and b) that additional posters should be developed to address knowledge gaps. Subjects of particular interest were advice on ash cleanup operations for city authorities; impacts on building facilities; impacts on heating, ventilation and air-conditioning (HVAC) systems and emergency power generators; and impacts on computers and electronics. A further change was that the content of the original poster on power systems was split between two new posters: one on electricity generation facilities and the other on electricity transmission and distribution networks. This expansion made it possible to incorporate substantial new research in this area (Wardman et al. [2012a]). The new series of posters are shown in Figures 6, 7, 8, 9, 10, 11, 12, 13, 14, 15. We note that despite telecommunications being a key critical infrastructure sector, we did not consider there to be sufficient documentation of impacts or mitigation guidance to create a robust poster.
Poster content
Content was derived from the research team's observations of the consequences of volcanic eruptions around the world (summarised in Wilson et al. [2012b]). These insights were supplemented by findings from empirical laboratory experiments, such as the vulnerability of high-voltage transmission insulators to flashover from volcanic ash contamination (e.g. Wardman et al. [2012a]; [2012b]; Wilson et al. [2012b]). Poster content was written to be practical, with action-based knowledge. Expert elicitation from AELG members was used to ensure that content was technically correct, relevant and used accurate with terminology (Figure 16). Consultation broadened beyond AELG as required: power generating companies within Bay of Plenty Engineering Lifelines Group contributed to and reviewed ‘Advice for Power Plant Operators’, the Ministry of Health reviewed ‘Advice for Water Supply Managers’ and the Civil Aviation Authority reviewed ‘Advice for Airport Managers’. Active involvement with the Ministry of Health has also contributed to improved volcanic health impact coordination between volcanic impact scientists and public health professionals. This approach ensured access to the best possible knowledge, facilitated broad participation of relevant organisations, increased awareness of the posters as a resource, and raised the visibility of VISG.
Posters are tailored for individual sectors and reflect each sector’s approach to volcanic risk management. Therefore the ‘Advice for Airport Managers’ poster simply summarises likely impacts and directs airport managers towards national and global planning and response resources, such as the International Civil Aviation Organisation (ICAO) reference guides. The involvement of Air New Zealand Ltd (the major regional airline in New Zealand) and the New Zealand Civil Aviation Authority in designing and reviewing the poster was essential to create a resource aligned with industry standards and suitable for the New Zealand aviation sector.
The restricted space in a poster format enforced concise summaries of impacts and mitigation measures. It was therefore important to be able to refer to further resources and the posters were designed to link with established, authoritative volcanic ash impact information sources. The USGS/GNS volcanic ash impacts website (http://volcanoes.usgs.gov/ash/) and the International Volcanic Health Hazard Network website (www.ivhhn.org) are referred to on nearly all posters, depending on topic and intended audience. Sector-specific resources are provided where available, such as the ICAO Manual on Volcanic Ash, Radioactive Material and Toxic Chemical Clouds (ICAO [2007]) referenced on the poster on ‘Advice for Airport Managers’.
Design
The posters are designed as fact sheets which refer the specialist audience to specific information, such as further web-based resources or industry standards where appropriate. Language, terminology and graphics used on the posters are designed primarily for the target audience of New Zealand critical infrastructure managers. Design elements of the posters are described in Figure 17.
Review process
The posters underwent a two-stage review process. Initially they were reviewed by a team of eight scientists within the VISG project team, then submitted to a technical sub-group of the AELG or other appropriate organisations (Figure 16), typically including engineers, risk managers and business continuity advisors. Their feedback was used to revise the posters. This process was repeated as required, with up to five iterations in some cases. Posters were also reviewed by colleagues from the Alaska Volcano Observatory, who have extensive operational experience in responding to ash-producing eruptions and interacting with affected sectors before, during and after ashfall events. This provided a valuable external perspective.
Dissemination
Once finalised, the updated Series 2 posters were distributed to all AELG members, to the New Zealand National Engineering Lifelines Committee for national distribution, and also hosted on the AELG and GNS Science websites as an open access resource (http://www.aelg.org.nz/volcanic-impacts/visg-projects/; http://www.gns.cri.nz/Home/Learning/Science-Topics/Volcanoes/Eruption-What-to-do/Ash-Impact-Posters). Public outreach talks and briefings by GNS Science staff in New Zealand, which regularly include briefings to regional engineering lifeline groups, routinely promote awareness of the posters, along with other preparedness and mitigation resources. An annual volcanic hazard short-course for infrastructure and emergency managers also uses the posters during exercises. They are also used in university teaching for scenario-based role-play simulations. Series 1 posters were also widely disseminated and utilised during the 2012 Te Maari eruption from Tongariro volcano.
The suite of posters has also been shared internationally, via distribution by the IAVCEI Cities and Volcanoes Commission’s Volcanic Ash Impacts Working Group and will be hosted on the USGS Volcanic Ash Impacts Website (http://volcanoes.usgs.gov/ash/index.html) as a resource for the global community.
Posters in action – Esquel case study
A practical test of the posters’ utility occurred during the May 2008 eruption of Volcan Chaitén, Chile (Stewart et al. [2009]). In early May 2008 widespread ashfall from the explosive rhyolitic eruption was distributed by the prevailing westerly winds over Argentina. The city of Esquel (pop. 35,000), located 110 km east of the volcano in Chubut province, Northern Patagonia, received approximately 5 mm of fine ash on the morning of 5 May (Figure 18A). Public authorities were immediately concerned about contamination of the city’s water supply as residents reported a ‘strong metallic taste’ in the drinking water.
The water sources for the city are primarily groundwater and thus are relatively resilient to ashfall contamination. However, there is a point of vulnerability where the water is delivered to the treatment plant along the open, concrete-lined 2.3 km-long Canal de Faldeo (Figure 18B).
The water supply authority did not have any knowledge of potential impacts of an ashfall on the water supply. In their search for information they contacted a member of our research team (CS) who had authored a review of the subject (Stewart et al. [2006]). She provided advice, in collaboration with a local university, on an appropriate water sampling and monitoring regime and interpretation of ashfall leachate data. Using the poster “Advice for water supply managers” (Figures 1, 2, 3, 4, 5), she also provided guidance on impacts and mitigation strategies. Water sampling showed that levels of sulphate and dissolved iron and aluminium were higher in the Canal de Faldeo than the raw water source, and to a lesser extent, in treated drinking water (Stewart et al. [2009]). These elevated levels were sufficient to produce a noticeable taste in the final drinking water but remained well below Argentinian drinking water standards (see Stewart et al. [2009]). The water authority was thus able to reassure the public that ashfall contamination of the water source did not pose a public health risk.
Two-way exchange of information between the poster design team and the water authority was critical for ground-truthing and refining the management advice on the posters. Our predictions were that the primary impacts of the ashfall would be an increase in raw water turbidity and that water demand would increase as residents cleared ash from their properties. These both proved to be the case. Local authorities also noted the value of the poster’s advice to communicate information to the public in a timely and transparent manner as the metallic taste in the water had caused some anxiety about contamination of the water supply.
Internationalising posters?
The case study above illustrates that these posters may be useful tools during an eruption crisis beyond the New Zealand context for which they were designed. The technical and engineering content of the posters was based on findings of ashfall impact assessment trips, to an extensive range of volcanically-active countries (Table 1, Volcanic impacts research group). Thus, the advice given is applicable to infrastructure not just in New Zealand (which has highly-modernised infrastructure) but in other, less-developed, settings. For example, the ‘Advice for Wastewater Managers’ poster (Figure 7) describes ashfall impacts on individual system components, so that individual treatment facilities can select relevant components. Similarly, many components of infrastructure systems such as pumping equipment, HVAC units and engine components are universal thus the mitigation advice given is applicable.
However, we note that the emergency management content of the posters is specific to New Zealand. This includes aspects such as where to find warning information in the event of an eruption, and (for the ‘Advice for Airport Managers’ poster) contact details for the local Volcanic Ash Advisory Centre (VAAC).
Summary
This paper describes a collaborative process used to create a suite of ten informational posters intended to improve the resilience of critical infrastructure organisations to volcanic ashfall hazards. Key features of this process were:
a collaborative partnership between critical infrastructure managers and relevant government agencies with volcanic impact scientists;
consultation and review phases; and
translation of volcanic impact research into practical management tools.
In addition to producing the posters, which are a unique global resource, the process has further enhanced and grown networks between volcanic impact scientists/agencies and critical infrastructure organisations. We note that our work has been developed in a New Zealand context and thus has relied heavily on the highly networked VISG and AELG structures, and existing risk management culture. Whilst the posters have utility beyond New Zealand, as demonstrated by the Chaitén case study, we propose that this development process may be a useful model for strengthening volcanic risk resilience in other settings.