Albert PG, Smith VC, Suzuki T, McLean D, Tomlinson EL, Miyabuchi Y, Kitaba I, Mark DF, Moriwaki H, SG06 project members, Nakagawa T (2019) Geochemical characterization of the Late Quaternary widespread Japanese tephrostratigraphic markers and correlations to the Lake Suigetsu sedimentary archive (SG06 core). Quat Geochronol 52:103–131. https://doi.org/10.1016/j.quageo.2019.01.005
Article
Google Scholar
Altman D, Machin D, Bryant T, Gardner M (2013) Statics with confidence: Confidence intervals and statistical guidelines, 2nd edn. BMJ Books, Wiley, Hoboken, p 254 ISBN: 978-1-118-70250-5
Barberi F, Macedonio G, Pareschi MT, Santacroce R (1990) Mapping the tephra fallout risk: an example from Vesuvius, Italy. Nature 344:142–144
Article
Google Scholar
Bear-Crozier AN, Miller V, Newey V, Horspool N, Weber R (2016) Probabilistic volcanic ash hazard analysis (PVAHA) I: development of the VAPAH tool for emulating multi-scale volcanic ash fall analysis. J Appl Volcanol 5:3. https://doi.org/10.1186/s13617-016-0043-4
Article
Google Scholar
Bebbington M, Cronin SJ, Chapman I, Turner MB (2008) Quantifying volcanic ash fall hazard to electricity infrastructure. J Volcanol Geotherm Res 177:1055–1062. https://doi.org/10.1016/j.jvolgeores.2008.07.023
Article
Google Scholar
Becker J, Saunders WSA, Robertson CM, Leonard GS, Johnston DM (2010) A synthesis of challenges and opportunities for reducing volcanic risk through land use planning in New Zealand. Aust J Disaster Trauma Stud 2010-1. ISSN: 1174-4707 2010–.1 https://www.massey.ac.nz/~trauma/issues/2010-1/becker.htm
Blong RJ, Grasso P, Jenkins SF, Magill CR, Wilson TM, McMullan K, Kandlbauer J (2017) Estimating building vulnerability to volcanic ash fall for insurance and other purposes. J Appl Volcanol 6:2. https://doi.org/10.1186/s13617-017-0054-9
Article
Google Scholar
Bonadonna C, Connor CB, Houghton BF, Connor L, Byrne M, Laing A, Hincks TK (2005) Probabilistic modeling of tephra dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera. New Zealand J Geophys Res 110:B03203. https://doi.org/10.1029/2003jb002896
Article
Google Scholar
Budnitz RJ, Apostolakis G, Boore DM, Cluff LS, Coppersmith KJ, Cornell CA, Morris PA (1997) Senior Seismic Hazard Analysis Committee; Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts, vol 1–2. U.S. Nuclear Regulatory Commission, U.S. Dept. of Energy, Electric Power Research Institute NUREG/CR-6372, UCRL-ID-122160
Google Scholar
Cioni R, Longo A, Macedonio G, Santacroce R, Sbrana A, Sulpizio R, Andronico D (2003) Assessing pyroclastic fall hazard through field data and numerical simulations: example from Vesuvius. J Geophys Res 108(2063):B2. https://doi.org/10.1029/2001JB000642
Article
Google Scholar
Connor CB, Hill BE, Winfrey B, Franklin NM, La Femina PCL (2001) Estimation of volcanic hazards from tephra fallout. Nat Hazards Rev 2:33–42. https://doi.org/10.1061/(ASCE)1527-6988(2001)2:1(33)
Article
Google Scholar
Costa A, Dell’Erba F, Di Vito MA, Isaia R, Macedonio G, Orsi G, Pfeiffer T (2009) Tephra fallout hazard assessment at the Campi Flegrei caldera (Italy). Bull Volcanol 71:259–273. https://doi.org/10.1007/s00445-008-0220-3
Article
Google Scholar
Cox DR, Lewis PAW (1966) The statistical analysis of series of events. Methuen’s Monographs on Applied Probability and Statistics, London https://link.springer.com/book/9789401178037
Book
Google Scholar
Deligne NI, Coles SG, Sparks RSJ (2010) Recurrence rates of large explosive volcanic eruptions. J Geophys Res 115:B06203. https://doi.org/10.1029/2009JB006554
Article
Google Scholar
ESRI (1998) ESRI shapefile technical description. An ESRI white paper J-7855 p26, https://www.esri.com/library/whitepapers/pdfs/shapefile.pdf
ESRI (2016) What is a raster data? https://desktop.arcgis.com/ja/arcmap/10.3/manage-data/raster-and-images/what-is-raster-data.htm
Fujita E, Iriyama Y, Shimbori T, Sato E, Ishii K, Suzuki Y, Tsunematsu K, Kiyosugi K (2019) Evaluating volcanic hazard risk through numerical simulations. J Disaster Res 14:604–615. https://doi.org/10.20965/jdr.2019.p0604
Article
Google Scholar
Green RM, Bebbington MS, Jones G, Cronin SJ, Turner MB (2016) Estimation of tephra volumes from sparse and incompletely observed deposit thicknesses. Bull Volcanol 78:25. https://doi.org/10.1007/s00445-016-1016-5
Article
Google Scholar
Hayakawa Y (1985) Pyroclastic geology of Towada volcano. Bull Earthq Res Inst Univ Tokyo 60:507–592
Google Scholar
Hayakawa Y (1995) Characteristics of Japanese loam, and its eolian origin. Bull Volcanol Soc Jpn 40:177–190 (in Japanese with English abstract). https://doi.org/10.18940/kazan.40.3_177
Article
Google Scholar
Hayakawa Y, Imura R (1991) Eruptive history of the past 80,000 years of Aso volcano and the 1989 eruption. Bull Volcanol Soc Jpn 36:25–35. https://doi.org/10.18940/kazan.36.1_25
Article
Google Scholar
Hurst T, Smith W (2004) A Monte Carlo methodology for modelling ashfall hazards. J Volcanol Geotherm Res 138:393–403. https://doi.org/10.1016/j.jvolgeores.2004.08.001
Article
Google Scholar
Hurst T, Smith W (2010) Volcanic ashfall in New Zealand – probabilistic hazard modelling for multiple sources. N Z J Geol Geophys 53:1–14. https://doi.org/10.1080/00288301003631129
Article
Google Scholar
INTERNATIONAL ATOMIC ENERGY AGENCY (2016) Volcanic Hazard assessments for nuclear installations: methods and examples in site evaluation, IAEA-TECDOC-1795. IAEA, Vienna https://www.iaea.org/publications/11063/volcanic-hazard-assessments-for-nuclear-installations-methods-and-examples-in-site-evaluation
Google Scholar
Jenkins S, Magill C, McAneney J, Blong R (2012a) Regional ash fall hazard I: A probabilistic assessment methodology. Bull Volcanol 74:1699–1712. https://doi.org/10.1007/s00445-012-0627-8
Article
Google Scholar
Jenkins S, McAneney J, Magill C, Blong R (2012b) Regional ash fall hazard II: Asia–Pacific modelling results and implications. Bull Volcanol 74:1713–1727. https://doi.org/10.1007/s00445-012-0628-7
Article
Google Scholar
Jenkins SF, Magill CR, Blong RJ (2018) Evaluating relative tephra fall hazard and risk in the Asia–Pacific region. Geosphere 14:492–509. https://doi.org/10.1130/ges01549.1
Article
Google Scholar
Kashiwabara M, Hirose Y, Kagawa M, Kan K, Kasugai A, Yamagishi K (1976) The tephras of Yotei volcano Daiyonki-kenkyu 15:75–86 (in Japanese with English abstract)
Article
Google Scholar
Katoh S, Danhara T, Yamashita T, Takemura K, Okada A (1996) Late Quaternary tephra layer derived from Sambe volcano discovered in Kobe City, western Japan. Daiyonki-kenkyu 35:383–389 (in Japanese with English abstract)
Article
Google Scholar
Kawabata E, Bebbington MS, Cronin SJ, Wang T (2013) Modeling thickness variability in tephra deposition. Bull Volcanol 75:738. https://doi.org/10.1007/s00445-013-0738-x
Article
Google Scholar
Kiyosugi K, Connor C, Sparks RSJ, Crosweller HS, Brown SK, Siebert L, Wang T, Takarada S (2015) How many explosive eruptions are missing from the geologic record? Analysis of the quaternary record of large magnitude explosive eruptions in Japan. J Appl Volcanol 4:17. https://doi.org/10.1186/s13617-015-0035-9
Article
Google Scholar
Kleinbaum DG, Klein M (2012) Survival analysis: a self-learning text, Third edn. Springer, p 700. https://doi.org/10.1007/978-1-4419-6646-9
Book
Google Scholar
Machida H (1964a) Tephrochronological study of volcano Fuji and adjacent areas (part 1). J Geogr (Chigaku Zassi) 73:293–308 (in Japanese with English abstract). https://doi.org/10.5026/jgeography.73.293
Article
Google Scholar
Machida H (1964b) Tephrochronological study of volcano Fuji and adjacent areas (part 2). J Geogr (Chigaku Zassi) 73:337–350 (in Japanese). https://doi.org/10.5026/jgeography.73.337
Article
Google Scholar
Machida H, Arai F (1992) Atlas of tephra in and around Japan. University of Tokyo Press, Tokyo, p 276 (in Japanese)
Machida H, Arai F (2003) Atlas of tephra in and around Japan, (revised edition). University of Tokyo Press, Tokyo, p 336 (in Japanese)
Google Scholar
Maeno F, Nagai M, Nakada S, Burden RE, Engwell S, Suzuki Y, Kaneko T (2014) Constraining tephra dispersion and deposition from three subplinian explosions in 2011 at Shinmoedake volcano, Kyushu. Japan Bull Volcanol 76:823. https://doi.org/10.1007/s00445-014-0823-9
Article
Google Scholar
Magill CR, Hurst AW, Hunter LJ, Blong RJ (2006) Probabilistic tephra fall simulation for the Auckland region, New Zealand. J Volcanol Geotherm Res 153:370–386. https://doi.org/10.1016/j.jvolgeores.2005.12.002
Article
Google Scholar
Mannen K (2014) Particle segregation of an eruption plume as revealed by a comprehensive analysis of tephra dispersal: theory and application. J Volcanol Geotherm Res 284:61–78. https://doi.org/10.1016/j.jvolgeores.2014.07.009
Article
Google Scholar
Marzocchi W, Bebbington MS (2012) Probabilistic eruption forecasting at short and long time scales. Bull Volcanol 74:1777–1805. https://doi.org/10.1007/s00445-012-0633-x
Article
Google Scholar
Mastin LG, Van Eaton A, Schwaiger HF (2020) A probabilistic assessment of tephra-fall hazards at Hanford, Washington, from a future eruption of mount St. Helens. Open File Rep. US Department of the Interior, US Geological Survey, pp 2020–1133
Google Scholar
Miller V, Bear-Crozier AN, Newey V, Horspool N, Weber R (2016) Probabilistic Volcanic Ash Hazard Analysis (PVAHA) II: Assessment of the Asia–Pacific region using VAPAH. J Appl Volcanol 5:4. https://doi.org/10.1186/s13617-016-0044-3
Article
Google Scholar
Miyabuchi Y (2009) A 90,000-year tephrostratigraphic framework of Aso volcano, Japan. Sediment Geol 220:169–189. https://doi.org/10.1016/j.sedgeo.2009.04.018
Article
Google Scholar
Mueller W, Cowie H, Horwell CJ, Hurley F, Baxter PJ (2020) Health impact assessment of volcanic ash inhalation: a comparison with outdoor air pollution methods. GeoHealth 4:e2020GH000256. https://doi.org/10.1029/2020GH000256
Article
Google Scholar
Nagaoka S (1988) The late Quaternary tephra layers from the caldera volcanoes in and around Kagoshima Bay, southern Kyusyu, Japan. Geogr Rep Tokyo Metropol Univ 23:49–122 https://tokyo-metro-u.repo.nii.ac.jp/?action=pages_view_main&active_action=repository_view_main_item_detail&item_id=2850&item_no=1&page_id=30&block_id=164
Google Scholar
Nakada S (2015) Regularity of volcanic eruptions in terms of volcanic Explosivity index (VEI). Bull Volcanol Soc Jpn 60:143–150 (in Japanese with English abstract)
Google Scholar
Nakasuji A, Satake J (2004) Volcanic Hazard map: an introduction and overseas cases. J Jpn Soc Eng Geol 44:341–348. https://doi.org/10.5110/jjseg.44.341
Article
Google Scholar
Newhall CG, Self S (1982) The volcanic explosivity index (VEI) an estimate of explosive magnitude for historical volcanism. J Geophys Res 87:C21231–C21238. https://doi.org/10.1029/jc087ic02p01231
Article
Google Scholar
Ono K, Watanabe K, Hoshizumi H, Takada H, Ikebe S (1995) Ash eruption of Nakadake volcano, Aso caldera, and its products. Bull Volcanol Soc Jpn 40:133–151. https://doi.org/10.18940/kazan.40.3_133
Article
Google Scholar
Osman S, Thomas M, Crummy J, Carver S (2022) Investigation of geomechanical properties of tephra relevant to roof loading for application in vulnerability analyses. J Appl Volcanol 11:9. https://doi.org/10.1186/s13617-022-00121-2
Article
Google Scholar
Shimano T, Koyaguchi T (2001) Eruption styles and degassing process of ascending magma of the 1813 eruption of Suwanose-jima volcano, Southwest Japan. Bull Volcanol Soc Jpn 46:53–70 (in Japanese with English abstract)
Google Scholar
Sugimura A, Ueda S (1973) Island arcs: Japan and its environs. Elsevier:247
Suto S, Inomata T, Sasaki H, Mukoyama S (2007) Data base of the volcanic ash fall distribution map of Japan. Bull Geol Surv Japan 58:261–321 (in Japanese with English abstract). https://doi.org/10.9795/bullgsj.58.261
Article
Google Scholar
Suzuki T (1983) A theoretical model for dispersion of tephra. Shimozuru D and Yokoyama I ed. arc volcanism: physics and tectonics 95–113.https://pages.mtu.edu/~raman/papers2/Suzuki83.pdf
Suzuki T (1995) Origin of so-called volcanic-ash-soil: thickness distribution in and around Central Japan. Bull Volcanol Soc Jpn 40:167–176. (in Japanese with English abstract). https://doi.org/10.18940/kazan.40.3_167
Article
Google Scholar
Takada A, Yamamoto T, Ishizuka Y, Nakano S (2016) Explanatory Text of Geological Map of Fuji Volcano. Geological Survey of Japan, AIST 56 (2nd Edition)
Takarada S (2017) The volcanic hazards assessment support system for the online hazard assessment and risk mitigation of quaternary volcanoes in the world. Front Earth Sci 5:102. https://doi.org/10.3389/feart.2017.00102
Article
Google Scholar
Tsuji T, Ikeda M, Furusawa A, Nakamura C, Ichikawa K, Yanagida M, Nishizaka N, Ohnishi K, Ohno Y (2018) High resolution record of quaternary explosive volcanism recorded in fluvio-lacustrine sediments of the Uwa basin, Southwest Japan. Quat Int 471:278–297. https://doi.org/10.1016/j.quaint.2017.10.016
Article
Google Scholar
Uesawa S (2020) TephraDB_Prototype_ver1.1. https://doi.org/10.5281/zenodo.5109160
Uesawa S, Nakagawa M, Umetsu A (2016) Explosive eruptive activity and temporal magmatic changes at Yotei volcano during the last 50,000 years, Southwest Hokkaido, Japan. J Volcanol Geotherm Res 325:27–44. https://doi.org/10.1016/j.jvolgeores.2016.06.008
Article
Google Scholar
Wardman JB, Wilson TM, Bodger PS, Cole JW, Stewart C (2012) Potential impacts from tephra fall to electric power systems: a review and mitigation strategies. Bull Volcanol 74:2221–2241. https://doi.org/10.1007/s00445-012-0664-3
Article
Google Scholar
Waythomas CF, Power JA, Richter DH, McGimsey RG (1998) Preliminary volcano-hazard assessment for Akutan volcano, east-central Aleutian Island. In: Geological Survey Open-File Report, Alaska, U.S.A. http://pubs.er.usgs.gov/publication/ofr98360, pp 98–360
Wilson G, Wilson TM, Deligne NI, Cole JW (2014) Volcanic hazard impacts to critical infrastructure: a review. J Volcanol Geotherm Res 286:148–182. https://doi.org/10.1016/j.jvolgeores.2014.08.030
Article
Google Scholar
Wohletz K, Heiken G (1992) Volcanology and geothermal Energy. University of California Press, Berkeley, p 415 http://ark.cdlib.org/ark:/13030/ft6v19p151/
Google Scholar
Yamamoto T, Nakada S (2014) In: Papale P, Shroder JF (eds) Extreme volcanic risks 2: Mount Fuji. In: volcanic hazards, risks, and disasters, hazards and disasters series. Elsevier, Amsterdam, p 505. https://www.elsevier.com/about
Yamano H, Nishino H, Kurisaka K, Yamamoto T (2018) Development of probabilistic risk assessment methodology against volcanic eruption for sodium-cooled fast reactors. ASCE-ASME J Risk Uncertain in Eng Syst B Mech Eng 4:030902-1–030902-9. https://doi.org/10.1115/1.4037877
Article
Google Scholar
Yang Q, Bursik M (2016) A new interpolation method to model thickness, isopachs, extent, and volume of tephra fall deposits. Bull Volcanol 78:68. https://doi.org/10.1007/s00445-016-1061-0
Article
Google Scholar
Yang Q, Pitman EB, Bursik M, Jenkins S (2021) Tephra deposit inversion by coupling Tephra2 with the Metropolis-Hastings algorithm: algorithm introduction and demonstration with synthetic datasets. J Appl. Volcanol. 10: 1. https://doi.org/10.1186/s13617-020-00101-4
Yokoyama I, Tilling RI, Scarpa R (1984) International Mobile early-warning system (s) for volcanic eruptions and related seismic activities, Paris; UNESCO FP/2106-82-01 2296, p 102
Yoshimoto M, Shimano T, Nakada S, Koyama E, Tsuji H, Iida A, Kurokawa M, Okayama Y, Nonaka M, Kaneko T, Hoshizumi H, Ishizuka Y, Furukawa R, Nogami K, Onizawa S, Niihori K, Sugimoto T, Nagai M (2005) Mass estimation and characteristics of ejecta from the 2004 eruption of Asama volcano. Bull Volcanol Soc Jpn 50:519–533. https://doi.org/10.18940/kazan.50.6_519
Article
Google Scholar